Using Power-Anomalies to Counter Evasive
Micro-Architectural Attacks in Embedded Systems

Shijia Wei!, Aydin Aysu?, Michael Orshansky'!, Andreas Gerstlauer', and Mohit Tiwari!
'Department of Electrical and Computer Engineering, The University of Texas at Austin
2Department of Electrical and Computer Engineering, North Carolina State University
Yshijiawei, orshansky, gerstl, tiwari} @utexas.edu >aaysu@ncsu.edu

Abstract—High-assurance embedded systems are deployed for
decades and expensive to re-certify — hence, each new attack is
an unpatchable problem that can only be detected by monitoring
out-of-band channels such as the system’s power trace or elec-
tromagnetic emissions. Micro-Architectural attacks, for example,
have recently come to prominence since they break all existing
software-isolation based security — for example, by hammering
memory rows to gain root privileges or by abusing speculative
execution and shared hardware to leak secret data. This work
is the first to use anomalies in an embedded system’s power
trace to detect evasive micro-architectural attacks. To this end, we
introduce power-mimicking micro-architectural attacks — including
DRAM-rowhammer attacks, side/covert-channel and speculation-
driven attacks — to study their evasiveness. We then quantify the
operating range of the power-anomalies detector using the Odroid
XU3 board - showing that rowhammer attacks cannot evade
detection while covert channel and speculation-driven attacks can
evade detection but are forced to operate at a 36x and 7x lower
bandwidth. Our power-anomaly detector is efficient and can be
embedded out-of-band into (e.g.,) programmable batteries. While
rowhammer, side-channel, and speculation-driven attack defenses
require invasive code- and hardware-changes in general-purpose
systems, we show that power-anomalies are a simple and effective
defense for embedded systems. Power-anomalies can help future-
proof embedded systems against vulnerabilities that are likely
to emerge as new hardware like phase-change memories and
accelerators become mainstream.

I. INTRODUCTION

Systems embedded in critical infrastructure, like robotics,
manufacturing or hospitals, face many evolving threats over
their decades of deployment. Such embedded systems have
to pass stringent, time-consuming and costly compliance re-
quirements before they can be deployed or upgraded. In many
cases, users choose to not upgrade them [1], [2], leaving them
vulnerable to threats that emerge post-deployment [3], [4]. As
a result, there is considerable interest in placing out-of-band
monitors that observe physical side-effects of computation to
detect malicious activity in benign systems. For example, fine-
grained monitoring of electromagnetic (EM) emissions [5]-[7]
or power [8]-[11] has been shown to reliably detect tampering
of small programs on micro-controllers.

Out-of-band detectors are, however, hard to scale to modern
attacks on complex embedded systems such as robots and
drones [12]. Benign systems include complex systems-on-chip
(SoC) hardware [13] with dynamic behaviors due to advanced
cache hierarchies, accelerators, and on-chip networks; running
software such as computer vision and distributed control on
systems like Linux or Robot Operating Systems (ROS). Fur-
thermore, micro-architectural attacks [14]-[17] break all soft-
ware defenses without tampering with existing code—instead,
they reuse benign instructions with data specifically crafted to

Analysis/Model Building

Benign applications [N\/\
? device /M
execution
» —
2 WA/ =
) - —

Feature Vectors in
Time & Freq. Domain

p (mA)

Embedded

/0

Models of
Benign Apps

Core Power Trace
From Sensors

Malware injected

into a benign app p(mA)

W

Embedded
device
execution

Detection!

t(s)

il

Deployment

Fig. 1: Overview of power-anomaly detector system.

abuse speculative execution [16], [17] or DRAM characteris-
tics [15]. Can power analysis observe the ‘signal’ inherent in
an attack through the noise of benign execution? Can evasive
attacks [18]-[20] hide behind noise? This paper provides guan-
titative answers to these questions.

We demonstrate that power-anomalies can reliably cut
through the noise of diverse benign programs to detect micro-
architectural attacks in complex embedded systems. First, we
have to model evasive attackers — to this end, we introduce
the first power-mimicry technique where an attacker shapes
its power trace to mimic that of a benign program while
continuing to execute its malicious task. In doing so, the
attacker pays with efficiency (lower channel bandwidth, for
example) to evade detection. We then test a range of power-
anomaly detectors using benign programs from computer vision
to room navigation on real hardware to quantify the operating
range [21] of our anomaly detector. We find that, surprisingly,
rowhammer attacks cannot evade even simple power-anomaly
detectors. Further, power-mimicking covert-channels are forced
to reduce bandwidth by 36 x while speculation-attacks (Spectre)
are reduced by 7x. The key takeaway is that, for embedded
systems, power-anomaly is a simple, effective alternative to
defenses that use new hardware designs (caches [22] and mem-
ory controllers [23]) or new OS-techniques (that hide /proc).
We demonstrate through an FPGA-based prototype that power-
anomalies are simple enough to be deployed inside (e.g.)
software-defined batteries [24] and smart energy management
systems [25].

Fig. 1 describes our approach: security engineers train
machine-learning models using benign applications’ power draw
and deploy the models in off-chip logic. Detection-alerts from
each detector are then forwarded to global detectors that use
collaborative or ensemble methods with other types of per-
device detectors [26]-[29] to weed out false positives and

— | benien (cg)avceg(te»)channel power-mimicking
< 8 . malware
(face-detection) \ beni
= gn .
c 4 / (facerdetection)—
£ I bannel
covert-channe
8 m {membus)
=l 3 : T
; 1
z)
[a)]
g°r el T
LT 7S
o u l
1 | rowhammer | 1
0 0.5 1.5 2

1
Time (s)

Fig. 2: Two seconds of CPU power consumption of an embedded
processor. While baseline micro-architectural attacks generate anoma-
lies on periodic power consumption, an adaptive malware (brown) can
mimic benign behavior.

prioritize alerts for attention. The goal of per-device anomaly
detectors, including power-anomalies, is not perfect detection
with zero false-positives; it is to drive false-positives low enough
that global detectors can identify true positives in aggregate.
For reference, system-call [29] and hardware performance
counter [30]-[32] detectors operate at true-positive rates of
80%—-90% and false positives from 1%—-20%.

Fig. 2 demonstrates baseline and evasive malware on a real
example. It shows the CPU power consumption of an ARM
SoC device executing a real-time face detection application [33]
as part of a video-surveillance pipeline. A malicious program
(‘malware’) runs on the system for a split second, performing
a rowhammer exploit, a baseline covert-channel, and a power-
mimicry covert-channel attack, before releasing the system to its
normal operations. Despite application phase variations and OS
noise, baseline malware generate observable anomalies on the
regular power consumption of face detection. In contrast, an
evasive power-mimicking attack (brown) replicates the power
behavior of face detection and may evade detection.

We construct three power-anomaly detectors to explore de-
tection performance vs. training effort and implementation com-
plexity: (1) a radius-distance based nearest neighbor (RBNN)
classifier, (2) a one-class Support Vector Machine (ocSVM), and
(3) a recurrent neural networks using Long Short Term Memory
(LSTM). We explore the design space of the detectors using a
variety of features and parameters. Our results show that, on
face detection, while RBNN performs poorly, both ocSVM- and
LSTM- based classifiers achieve close to perfect detection per-
formance on baseline rowhammer, Spectre, and covert-channel
attacks—at 99% true positives, attacks are detected with less
than 0.7%, 0.6% and 0.8% false positive rate, respectively.

Against evasive power-mimicking attackers, we show that a
rowhammer attack does not succeed after mimicking benign
behavior because power-mimicking slows down rowhammer
attack’s memory accesses to a rate at which it can no longer flip
a bit. Covert-channel and Spectre attacks, by contrast, can shape
their power signature while continuing to leak information, but
doing so forces the channel to lower bandwidths. For example,
a mimicry covert-channel attack needs to lower its bandwidth
to 2.8% of its baseline—a 36X reduction—while a mimicry
Spectre, similarly, loses bandwidth by 7x.

We conduct all experiments on an Odroid-XU3 running
embedded Linux detailed in § V-Al. Finally, we prototype
the ocSVM based detector on an NIOS-II micro-controller

Malware Categories

Software Attacks Hardware Attacks
. Micro-Arch Evasive Micro-Arch

. Generic Malware Covert-Channels attacks attacks

£l

2 pharmaceutical N i
> @ compounder [53] . : i
.E_g o mobile phones [58] i Our Work !
B g] i ;
£ g mobile phones [54-57] | i
[
[&]
aE: 2 MCU [8]
0 2 software-
& 2 defined ra‘dios 9] N/A N/A

% smart-grid [10]

£ SCADA devices [11]

Fig. 3: Existing work in malware detection using power traces.

synthesized to a low-cost FPGA. The prototype occupies only

5046 Logic Cells (23% of a small 30-USD Altera Cyclone-IV

FPGA) and performs the detection in real-time.

Our key contributions include:

o We propose power-anomaly detectors as a simple, out-
of-band, and effective way to detect a range of micro-
architectural attacks — including speculative side-channels,
covert-channels, and rowhammer — and to drive down effec-
tiveness of evasive attacks.

o We introduce evasive, power-mimicking micro-architectural
attacks that replicate the power behavior of benign applica-
tions while also executing malicious tasks. We compute the
bandwidth cost of mimicry for side- and covert-channels.

o We construct machine learning classifiers that observe coarse-
grained power traces (i.e., that are available to smart batteries
and power-management units), and quantify the detectors’
operating range — specifically, (a) rowhammer attacks cannot
evade detection, and (b) covert-channel and Spectre attacks
are forced to lose 36x and 7x bandwidth respectively to
evade detection in our setup.

In summary, our detection results and hardware implemen-
tation suggest that a particularly damaging and sophisticated
class of attacks can be subverted through a simple mechanism
— power-anomaly detection — that is easy to deploy, does not
require expensive upgrades, and can be augmented to handle
the slew of attacks that will likely emerge to exploit write-
endurance, memory remanence, and similar benign-looking
side-effects of new hardware.

II. BACKGROUND AND RELATED WORK

We discuss micro-architectural attacks and prior work in
power-based (and other) detectors. We address the gap (Fig. 3)
that power-anomaly detectors have not been studied against
micro-architectural attacks — we do so for both baseline and
evasive power-mimicking attacks.

Micro-Architectural Attacks. Malware can abuse micro-
architectural behaviors to break confidentiality or integrity.

Covert-channel and Speculation-driven attacks are two rep-
resentative types of attacks that break system confidentiality.
Covert-channel attacks enable two isolated processes running
on a system to communicate through a channel that is not
designed to transmit information. For micro-architectural covert-
channels, the covert communication is achieved by leveraging
contentions on shared hardware resources like the last-level
cache. An example protocol looks like following: a busy state on
the shared resource correspond to ‘1’ while an idle state refers to
‘0’. Processes communicate by obtaining/releasing and checking

the shared resource’s availability. A number of covert-channel
attacks have been demonstrated on x86 architectures based on
micro-architectural resources such as data and control path [34],
caches [35], SMT [36], specialized hardware units [37], and
memory buses and controllers [38], [39]. On ARM cores, Lipp
et al. [14] recently demonstrated the first cache covert-channel.
Unlike covert-channel attacks in which two processes delib-
erately communicate information, in speculation-driven attacks,
e.g. Spectre [16], an attacker tricks the victim into speculatively
executing a gadget which reads a (victim’s) secret into a
micro-architectural structure. The attacker subsequently learns
the secret through a micro-architectural side-channel. Many
variants have additionally leveraged deffered exceptions [17],
speculative stores [40], page-walks [41], and system register
reads [42] to break isolation boundaries like hardware enclaves.
Various software and hardware mitigation have been proposed,
introducing up to 25% performance overhead [42], [43].
Rowhammer, introduced by Kim er al. [44], breaks system
integrity by modifying the contents of the memory. This vulner-
ability causes unintentional flips within a row of DRAMs when
there are rapid memory accesses to its adjacent rows. Seaborn
et al. exploited rowhammer vulnerability by flipping critical bits
containing kernel privilege information to gain root access to the
system [45]. Various attack vectors have been proposed, such
as leveraging cache flush instructions [46], non-temporal store
instructions [47], and cache eviction strategies [14] to subvert
the entire system through the rowhammer attack. Recently,
rowhammer attacks have been implemented on ARM embedded
devices leveraging DMA interface [15].
Traditional (In-Band) Digital Defenses. Mitigations for micro-
architectural attacks is an active area of research. One approach
is to identify and eliminate the causes of micro-architectural
vulnerabilities. Examples include restricting unprivileged usage
of cache-flush instructions [45], removing userland Direct Mem-
ory Access (DMA) interface [15], enforcing time-multiplexing
or fixed-service memory controllers [39], [48], shared-caches
partitioning [35], and disabling hyper-threading [49]. These
mitigations, however, require processor architecture modifica-
tions or operating system updates. An alternative approach is
to detect malicious processes as they execute and raise alerts
to a security service. However, traditional detectors like static
signature based analysis [50], dynamic behavioral detectors
based on permissions, API and system calls [29], [51] do not
fully capture micro-architectural behaviors. Hence, they fail to
detect the attacks exploiting hardware ‘features’. Hardware-
based Malware Detectors (HMD) using performance counters
[30]-[32], [52] and dedicated hardware units [30] can cap-
ture micro-architectural attacks. Our work, which proposes the
use of out-of-band power-anomaly detectors to detect micro-
architectural attacks and quantifies their operating ranges, is
complementary to HMD and other in-band detectors.
Anomaly Detection From Power Traces. Fig. 3 summarizes
existing work on power-anomaly detectors in two dimensions:
malware categories and system complexity. As shown in Fig. 3,
a number of power-based malware detectors have been in-
vestigated on low-complexity embedded systems such as 8-bit
microcontrollers with simple programs [8]-[11]. These devices
do not have micro-architectural features that enable the attacks
we analyze. Anomaly detection on more complex embedded
devices, such as a pharmaceutical compounder [53] or mobile

phones [54]-[58] through power footprints has also been studied
for identifying various types of malware. However, to our
best knowledge, none of them have ever been evaluated with
advanced micro-architectural attacks and attacks that actively
mimic the power behavior of benign applications.

The work of Caviglione et al. is relatively close to our con-
text. It conducts a preliminary study of covert-channel detection
based on the energy consumption of a mobile phone [58].
Compared to our work, both the capability of covert-channels
and the detection mechanism is relatively low. They implement
several event-based covert-channels and try to detect them.
Attacks are detected, only compared to the /DLE state, through
the large difference in energy-consumption. By contrast, this
work studies and detects, for the first time, evasive covert-
channels (and rowhammer attacks) that replicate the power
behavior of benign applications. Only with effective attacks and
power-mimicking malware introduced in this work, we quantify
the operating range of the power-anomaly detectors.

Besides power consumption, electromagnetic radiation of a
device collected by a near-field probe is shown to be a promising
source to enforce control flow integrity of micro-processors [S]—
[7]. In their setting, the fine-grained measurements (of up
to seven orders-of-magnitude finer than ours) is critical to
detection. The proposed detectors, however, can cost up to
several thousands of dollars and is not yet practical for embed-
ded systems. By contrast, our work uses existing out-of-band
power sensors on embedded devices, which provides mobility,
resistance to environmental noise and cost-effectiveness.
Evasive Malware. A line of research, similar in spirit to
our work, focuses on evasive malware analysis [19]-[21],
[59]. These works target different channels than ours — e.g.,
hardware performance counters (HPC) [19]-[21] and network
traffic inspectors [59] — as well as different attacks (generic
malware instead of micro-architectural attacks). Furthermore,
we study evasive malware that actively mimics benign behaviors
by both padding logical NOPs and grafting variants onto benign
applications — techniques that prior work has presumed to not
be feasible for their case-studies [19]. RHMDs’ [20] mimicry is
conceptually close to us since the authors reverse-engineer HPC
detectors to insert minimal dummy instructions into malware
that successfully evade detection. However, we target power-
mimicry instead of HPC mimicry; beyond this, we inject entire
micro-architectural malware tasks into benign programs, while
RHMD inserts dummy instructions into malware.

III. POWER-ANOMALY PRELIMINARIES

In this section, we discuss the deployment and threat model
for a power-anomaly detector (§ III-A), and our implementation
of a representative set of micro-architecture attacks (§ III-B).

A. Power-Anomaly Deployment

Constraints. In a long-term deployment, we expect power-
anomaly detectors will be required to identify many unknown
(post-deployment, ‘0O-day’) attacks. Hence we eschew super-
vised training with known malware and instead train models
using only the power traces of benign applications (hence the
‘anomaly’ detector). In addition, detectors will be deployed
under limited budget and off-chip pin access to deployed sys-
tems; therefore, power-anomaly detectors are constrained to use
sensors with coarse-grained sampling (200Hz in our prototype).

Application-Specific Detectors. We evaluate power-anomaly
detectors in both tailored or generic settings. A tailored detector
guards one application at a time—any behavior unknown to
the detector will be reported as malicious. A generic detec-
tor, however, has been trained with execution traces of the
complete set of benign applications running in the system. A
tailored detector can be more accurate in identifying execution
deviations from expected behaviors, while generic detectors
provide flexibility in protecting multiple applications at the
same time. In high-assurance systems, in which schedule of
each application is deterministic, tailored detectors are preferred
for lower complexity [60]. However for systems with dynamic
scheduling, a generic detector is needed.

Threat Model. Consider a drone that runs untrusted applica-
tions separated by an OS; we introduce a detector (e.g., on
a smart battery) that monitors CPU power and runs a light-
weight anomaly detector on a micro-controller or accelerator.
Applications can be tampered with by a malicious employee,
an untrusted motherboard component, or be actively mali-
cious [61]—i.e., in the field, an application can run rowhammer
to escalate privileges, or use covert-channels to leak secrets from
secret (e.g.) path planning or computer vision compartments to
an unclassified (e.g.) diagnostics compartment.

The detector aims to ensure that applications act in the field
as they did in testing; while the attacker can buy the same de-
vice and train mimicry-based evasive attacks. We want to find
the operating range of power-anomaly detectors against such
evasive adversaries. Note that the attacker has off-line access
to benign power draw-i.e., they can mimic power, but cannot
tamper with or run hamming-distance based (DPA) attacks on
the power trace in the field.

While a defense can use software, HPC, or turn off clflush,
once the devices is exploited (as we show, using flush-less
rowhammer), all software stack becomes untrusted. In contrast,
our detector is deployed on a tamper-resistant device (e.g., on
logic in a smart-battery) and managed by a security team out of
reach from employees and untrusted on-board hardware. The
detector observes CPU-only power trace (without noise from
its own power-draw) and can run on a micro-controller (like
our prototype) or an accelerator (for efficiency). To construct
power-mimicry attacks that evade any power-anomaly detector,
we do not customize the mimicry to specific classifier and its
parameters. Instead, we apply a generic method to replicate the
power behavior so that such evasive malware can stay effective
when detector are updated. As long as the above conditions are
met, we do not impose further constraints on applications or OS
running in the device once the detector is deployed.

Deployment Platforms. Although we use an ARM-based sys-
tem (§ V-Al) for our evaluation, this platform—including a
triple-issue out-of-order quad-core processor with a 15-stage
pipeline and two-level cache hierarchy—uses design and fab-
rication techniques similar to x86-based embedded systems. In
addition, recent advances in cross-platform power models [62]
suggest that power traces indeed carry information about pro-
gram execution that can be modeled with ~99% accuracy — our
insight is to use this information to detect attacks. We believe
that our methodology used to quantify the operating range and
the use of power-anomaly as an out-of-band detector is thus
applicable to other (e.g., x86) platforms.

B. Implementing Representative Micro-Architectural Attacks

Covert-Channel Attacks. Cache- and memory-bus- based
covert-channel attacks are two high-performance attacks that
break confidentiality [32].

In general, covert-channel attacks have two phases, a Synchro-
nization phase, synch for short, where two processes determines
when to start communication; and a Communication phase,
comm for short, where two processes transmit bits after synch.
In synch phase, for both cache-based and memory-bus-based
covert-channel attacks, the trojan and spy have to initiate com-
munication at the same time so that integrity of the transferred
information is preserved. In our implementation, this is achieved
by reading core local time stamp counter (TSC), and waiting
until a pre-agreed time point, e.g, both trojan and spy wait until
lower bits of TSC overflows, to start communication.

We implement a cache-based covert-channel attack without
Hyper-Threading or cache bypassing instructions like clflush.
Without Hyper-Threading, the comm phase of a cache-based
covert-channel attack has to use contentions on the LLC shared
among all cores—the trojan process sends information to the
spy process running on another core. This comm phase works in
Prime-Access-Probe fashion [32]. In each iteration, by evicting
spy’s data in LLC or not, trojan process transmits one bit of
information to spy process. The spy process uses HPC to count
number of cache misses encountered during probing. Larger
number of cache misses indicates data invalidated. Although an
alternative is using a timing channel, using HPC results in a
less noisy channel and higher bandwidth in our setup.

We implement the memory-bus-based covert-channel without
the bus locking instructions like xchg. For this covert-channel,
the comm phase consists a trojan process transmitting a single
bit each time through memory bus by creating bus congestion to
transmit a bit ‘1’. The spy process then uses its own execution
time to determine the bit transmitted. For both trojan and spy
processes, we extend ‘cache eviction set’ [14] access strategy
which generates maximum memory bus traffic on our system.
Spectre Attacks. We implement an intra-process Spectre attack
without cache flush instructions like clflush. In an intra-process
Spectre (bounds check bypass), the victim has valid access
to confidential data. Attacker exploits a conditional branch
residing in victim’s code by feeding the branch a malicious
input sequence to mistrain the branch predictor. We apply a
similar method elaborated by Kocher et al. [16]. The wrong path
of the branch accesses an out-of-bound, confidential memory
location and subsequently leaks the value loaded. In addition,
to construct a reliable cache side-channel, we perform an offline
timing side-channel analysis to reverse engineer congruent ad-
dress mappings. We then try techniques introduced by Lipp et
al. [14] to find a deterministic ‘strategy’ for cache line evictions.
However, we observe that, because of the random replacement
policy of ARM cores, none of the 10,000 ‘eviction strategies’
that we evaluated evict cache lines deterministically. Hence, we
pick the best two strategies (among 10,000) that evict a line with
high likelihood and are fast. Each time we want to evict a target
line (the arrays bounds variable and the cache lines used to infer
the secret), we make two attempts with both strategies to make
eviction closer to being deterministic. Our Spectre thus has two
phases — evict and reload, with a short speculative access by the
victim in between. That is, the attacker evicts its own cache lines
(the evict phase); it then tries to mislead the victim program to

speculatively read a classified memory location; and finally it
infers the secret byte by reloading the the cache line.
Rowhammer Attacks. While the hierarchical memory system
reduces the probability of rapid accesses to the same DRAM
row, purposefully crafted memory access patterns can still cause
bit-flips. We exploit an efficient attack vector, similar to Van
Der Veel et al. [15]: Our attack exploits Direct Memory Access
(DMA) buffers to bypass caches and issues rapid memory
accesses. Our attack also applies the double-sided hammering
to induce bit flips in DRAM rows. To achieve this attack,
we reverse engineer the DRAM structure and determine the
row size. Upon obtaining the row size, our attack chooses two
physical pages on adjacent rows to the victim row where target
physical page resides and then start issuing rapid DRAM access
until the bit-flip occurs. For the power analysis, we only capture
power trace of the bit-flipping phase of rowhammer attacks,
which turns out to be sufficient in identifying rowhammer.

IV. DESIGNING POWER MIMICKING
MICRO-ARCHITECTURAL ATTACKS

In this section, we discuss our methodology to construct an
evasive malware given a benign application’s power profile.

A. Designing Power-Mimicking Malware

Power signature of a program on a given micro-architecture is
primarily determined by its source code. Intuitively, in order to
ideally mimic the power trace, which is a physical characteristic
of the target application, the malware has to replicate all
instructions—such a malware, however, will no longer be a
malware but instead be a replica of the benign application.
In a realistic setting, modern embedded processors execute
instructions much faster than existing on-board power sampling
frequency, which provides malware the opportunity to mimic
coarse-grained power behavior of benign applications while
still be able to complete some malicious tasks. The key idea
behind power mimicking is that a malware can shape its power
behavior by inserting a precise amount of extra operations
during execution at a finer granularity than power sampling. For
example, in one setup where the detector is sampling power
at 5-ms granularity, the malware can execute a sequence of
power-hungry instructions every 200us to increase the power
consumption. To lower power, the malware can insert nop
instructions or simply sleep.

We define the terms below to describe our methodology.

« Atomic task: In order to make a progress towards completing
a certain malicious task, a malware has to execute a sequence
of instructions that cannot be stopped and resumed later. We
define this sequence of instructions as atomic task. A malware
may have multiple atomic tasks. Each of these tasks take a
certain amount of time and power to successfully execute.

« Atomic task period: Atomic task period is the time needed
for malware to execute an atomic task. For malware that has
multiple atomic tasks, atomic task period is the longest one.

« Atomic task power: During the execution of an atomic task,
the amount of energy (i.e. average power) consumed cannot
be further reduced by inserting nop instructions or sleeping.
Otherwise, the malicious task will fail, which violates mal-
ware’s original goal. We define this amount of required power
as atomic task power. In a malware that has multiple atomic
tasks, atomic task power is the minimum one.

N 4r Baseline Cache Covert Channel Power Profile |
<30 '
5T
S2) .
o Synchronizationi Communication b
1 . Phase : Phase 5|
0 50 100 150 200 250 Time (ms)

Fig. 4: Atomic task breakdown of baseline cache-based covert-channel
attack. Two phase of the attack consists of two types of atomic tasks,
synch and comm (§ 1II-B).

4.2 T T T T T T T
sync with power-shaping at 2.5ms BTU —&—

4 | comm with power-shaping at 2.5ms BTU —6— —

sync with power-shaping at 1.25ms BTU

3.8 |- . comm with power-shaping at 1.25ms BTU ' -

3.6 / .
< 34t
e
5 /
2 32 P B
e //

3\? > Z/ -
2.8 E/E'/ i
2.6 /E/ |

i
2.4 —
1 1 I I | I 1
(o] 20 40 60 80 100 120 140

Number of k-Instructions Added per Power-Sampling Interval for Mimicking

Fig. 5: Power shaping capability of evasive covert-channel attacker by
inserting power hungry instructions. After executing an atomic task
(sync or comm), the malware issues a sequence of instructions and
records the corresponding power consumption.

o Power sampling interval: The power monitor takes samples
with a fixed period, which we call power sampling interval.
Each sample is the average power since the previous sample.

« Basic time unit: Malware partitions a power sampling inter-
val into basic time units within which it can execute a fixed
number of atomic tasks and then shape its power signature
in between. Basic time unit is a design-time constant for the
malware and is a divisor of power sampling interval. Basic
time unit is the finest time granularity at which the malware
uses to shape its power. For example, for a basic time unit of
1 millisecond, malware can use the first 200us to execute an
atomic task, and the rest for power shaping.

We make two key observations: (1) If atomic task period is
longer than power sampling interval, the malware cannot shape

its power within this period; (2) a malware cannot perform an

atomic task when the atomic task’s power consumption is higher

than the one of benign application for a given basic time unit.

Fig. 4 shows the two phases of the baseline covert-channel
attack as described in § III-B: Synchronization and Communi-
cation. The atomic task period in Synch phase is the time to
read the timer and determine whether to start communication,
which takes less than lus. In Comm phase, atomic task period
is the time required to send/receive a single bit, which can
take from 125us to 1ms in our experimental setup depending
on malware’s design choice on maximizing channel bandwidth.
The atomic task period in this covert-channel is shorter than the
Sms power sampling interval. If there were no power channel
detector in the system, a malware would take the entire basic
time unit for Synch and Comm without any power mimicking.
However, in order to evade a power channel detector, the safest
course of action a malware can take is to shape its power within
every power sampling interval to mimic a benign application for
that power sample. Hence, malware breaks down each power

@ A
w oo

CPU Power (A)
N
o

N
3 IS I N

0/ 10 20 40 _60 80 120 140 160
Time (ms)

Basic
e D RN [[[[|
units

‘sync‘ pow-shp H comm ‘pow-shp‘ ‘ idle‘ pow-shp ‘

Fig. 6: Evasive covert-channel attacker design.

sampling interval into smaller basic time units within which the
malware can first potentially execute one type of atomic task and
then shape its power. Within that S5Sms power sampling interval,
power consumed in all basic time units, aggregated, mimics the
power draw of the targeted benign application. In our method,
mimicking malware distributes the total power uniformly to
basic time units, hence, malware aims to consume the same
amount of power at each basic time units.

Given these constrains, we modify our cache-based covert-
channel to mimic a face detection application, under our plat-
form’s 5-ms power sampling constraint. To successfully con-
struct a power mimicking attack, we first study the malware’s
ability to shape its power. Fig. 5 shows the range of power a
malware can achieve. In this experiment, we first execute an
atomic task and then apply power mimicking. Hence we show
the atomic task power (with zero instructions inserted) as well
as the maximum power a malware can achieve by inserting
power-hungry instructions, e.g. SIMD floating-point subnormal
operations. We vary the total number of power-hungry instruc-
tions inserted in each basic time units, a 5-ms time window in
Fig. 5, to plot this malware’s power shaping range. Essentially,
malware forms a map for the number of instructions inserted
vs. the resulting power. As long as a benign application’s power
trace falls within this range, it is possible for a malware to shape
its power to mimic this application. However, if in some time
window, the benign application’s power consumption is lower
than malware’s atomic task power, malware must stop malicious
tasks completely to remain undetected.

Fig. 6 visualizes our methodology on cache covert-channels.
It shows the power mimicry for a repeated period in the
face detection application that consists of 19 power samples
(depicted in blue). The figure shows the example where each
data point in the trace is sampled at 5-ms intervals and highlights
malware actions at 3 power samples. Malware breaks down a
5-ms window into four 1.25-ms basic time units within which
only one atomic task executes. The malware mimics the benign
application at each sample by first comparing the expected,
benign power with the atomic task power; if this value is higher
than the atomic task power, malware then executes an atomic
task (sync or comm) and uses the remaining time in basic time
unit to shape the power (pow-shp). Otherwise, malware waits
idly and then executes power shaping operations. Note that the
amount of instructions used for power shaping in a basic time
unit is determined from the map generated beforehand (Fig. 5).
Fig. 7 shows the result of our methodology. While the baseline
covert-channel attack has a visually distinct power signature,

Baseline Covert-Channel Power Profile

0 50 100 150 200 250 300
Covert-Channel Power Profile After Mimicking

| | l | [
100 150 200 250 300
Face Detection Power Profile

0 50

100 150 200
Time (ms)
Fig. 7: Power profile of baseline attack, power-mimicking cache-based

covert-channel attack, and face detection.

250 300

power-mimicking malware exhibits a similar behavior to the
benign face detection application.

In addition to cache covert-channels, we modify our Spectre
attack with power shaping capability. First, two atomic tasks
are identified: (a) Evicting cache lines, and (b) Attempting to
infer the secret value that is loaded into cache if the vulnerable
branch is mispredicted. The baseline Spectre tries to recover one
bit at a time, which requires a side-channel consisting of two
cache lines from different sets. Evicting both two lines on our
platform takes around 140us. We empirically determine that the
misprediction rate of the vulnerable conditional branch is around
0.1% with malicious training, resulting in an attack bandwidth
of 7.13 bps. Profiling results show that each attempt to mistrain
the branch predictor takes less than lus, with marginal effect
on a power draw sampling up to 200Hz on our platform.
The computational complexity of side-channel data extraction,
however, is the key to crafting a power-mimicry Spectre.

Note that we visualize our mimicry method on the face
detection application, while it can be extended to mimic other
applications. Mimicking any application in the benign suite is
sufficient to evade generic detectors that are trained on the suite.

B. Effectiveness of Evasive Attacks

We measure micro-architectural covert-channel attacks’ effec-
tiveness using channel capacity as the metric [32], [63], [64]—
modeling each covert channel as a discrete memoryless channel,
constructing channels with different trade-offs between bit-dura-
tion and reliability against noise, and using the Blahut-Arimoto
algorithm to compute channel capacity. Fig. 8 compares the
bandwidth of the baseline cache-based covert-channel to the
power-mimicking variants with different basic time units—the
window of time within which a fixed number of atomic tasks
are executed. Note that y-axis shows the bandwidth in logarith-
mic scale. Evasive malware have a minimum requirement of
125us for each atomic task, but beyond this, evasive malware
bandwidth benefits from a shorter basic time unit, as it can
execute atomic tasks more frequently. Hence as the basic time
unit increases, bandwidth goes down. Baseline attacks execute
one sync task for each basic time unit followed by comm tasks
continuously—i.e., an overhead of starting a new basic time
unit. Hence, bandwidth increases with longer basic time unit.
The baseline attack can achieve a peak bandwidth of 7574
bps (taking synchronization into account, which is necessary
whenever the malware resumes from the idle state). However,

2107

o) —

~ A E -Mimi i —=—l
% 1073 Power: Mémlclﬂrr}g Cozelr'} CRaRReI .

S 1072¢ m\s\s_s\ﬂ N
©

g 10

m 0 1000 2000 3000 4000 5000

Basic Time Unit (us)
Fig. 8: Evasive covert-channel bandwidth comparison. Increasing basic
time unit negatively effects the bandwidth of mimicking attacks since it
reduces the number of executed atomic tasks. By contrast, it increases
the bandwidth of baseline attacks that constantly execute atomic tasks.

with full power shaping capability, malware bandwidth degrades
by over 36, resulting in a maximum bandwidth of 209 bps.

For Spectre, similar to covert-channel attacks showed in
Fig. 8, a larger basic time unit makes attacks unreliable and
reduces bandwidth. While maintaining the capability of power
shaping, attacker can extract up to 6 bits of secrets in each
attempt, which requires evicting 64 lines, taking up to Sms.
However, due to the fact that eviction strategies may fail to
evict a cache line, this approach of exfiltrating more bits each
time results in a noisier channel (i.e., the probability of a failed
eviction is higher than that of a misprediction). Therefore, our
Spectre can only shape its power by extending basic time unit
up to Sms—we observe that further reduction in leak bandwidth
results in the failure of the attack. We attribute this behavior to
TLB and cache pollution between atomic tasks. The resulting
latency of the access to the cache channel is longer than the
time of a misspeculation resolution. In summary, mimicking in
Spectre results in a bandwidth range of 7.13 down to 1.0 bps.

We also modify the rowhammer attack to mimic the power
signature of face detection. However, we found that, if the
interval between two read operations to DRAM exceeds 200
ns, it is unlikely for this attack to trigger bit-flips in our
experimental platform, which complies with the findings of van
der Veen et al. [15]. Hence, in order to issue DRAM accesses
that cause bit flips, the atromic task of rowhammer is issuing a
sequence of rapid DRAM accesses instead of issuing one. This
results in an 64ms atomic task period (DRAM refresh interval),
which is significantly longer than the power sampling interval.
We therefore conclude that, in our setup, it is infeasible to craft
a power-mimicking rowhammer that evades the detector.

V. DETECTING ATTACKS

Intuitively, a detector using power channel as defense should
be effective since each application and malware has its own
power signature. However, § IV-A demonstrates that malware
can shape their power signatures. Therefore, evaluating power-
anomaly detectors requires quantifying the operating range of
detectors against a range of differently effective attacks. We
must apply a white-box evaluation, i.e. to evaluate against both
baseline and evasive malware.

A. Experimental Setup

1) Target Embedded Device: For our white-box evaluation,
we use an Odroid-XU3 board with a built-in energy monitor.
It is powered by a Exynos SoC with a big-core and a little-
core clusters. Specifically, we run all our experiments on the
big-core cluster and use the little-cores to emulate an out-of-
band detector. The big-core cluster consists of OoO Cortex-
Al15 quad cores with 32KB private L1I/D caches and a 2MB
shared L2. The board runs ubuntu-14.04 with gcc-4.8 with

r Face Detection 4r KMAC with SHA-3 4

w

-

Power (A)
o b N ¢
o= 0o N O W oA

0.5 s s ‘ ‘
0 1000 2000 3000 4000 5000
Time (ms)

0 1000 2000 3000 4000 5000
Time (ms)

r Room Navigation b

w

_

Power (A)
o b N ¢
o = 0o N O Ww o s

*>'0 1000 2000 3000 40005000 0 1000 2000 3000 4000 5000
Time (ms) Time (ms)

Fig. 9: Power signatures of benign workloads.

a 2GB LPDDR3 running at 933MHz. The on-board energy
monitor, INA231, can measure the power of the big-core cluster
every 1.25ms. We configure the system with DVFS enabled,
specifically the CPU frequency governor is set to interactive for
the big-cluster, which dynamically scales processor frequency
between 200MHz and 2GHz. In addition, for more controlled
experiments, we conduct the same tests with CPU frequency
fixed at 2GHz.

2) Benign Apps and Their Power Profile: For benign ap-
plications under test, prior work [6]-[8] use parts of existing
embedded system benchmarks [65], [66] or synthetic pro-
grams [7], [9] that have fairly short (up to 20 ms) execution
time. These applications, in the best case, run for half a second
on our platform. While this trace length is reasonable for prior
detectors using external, fine-grained measurements, given the
realistic embedded evaluation of our work with coarse-grained
sampling and relatively faster system, we use applications
that are representative of realistic scenarios to stress test our
detectors. These applications—cognition, cryptography, video
coding, and decision making—have been intensively studied
and used in real-world settings like robotic and drone systems
on ARM processors [67]-[69]. Specifically, a multithreaded
face detection from the OpenCV with dataset from a video
surveillance benchmark [33], a KMAC hashing (SHA-3) [70],
a multithreaded video encoding application from FFmpeg and a
room navigation running on the multiprocess Robot Operating
System (ROS) [71] are used.

Fig. 9 illustrates the power signatures of the big-core while
executing these applications. The figures demonstrate phases
in the benign applications. While KMAC and room navigation
have minor variations in power, video encoding and face de-
tection have significant variations in their power consumption.
For example, video encoding does more computations (higher
power) if the objects in the video have many motions or scene
changes. Likewise, face detection has a periodic power behavior
with the period determined by the frame rate of inputs.

B. Methodology and Detector Design Space

1) Methodology and Metrics: Figs. 5 and 8 show that attacks
compromise bandwidth for power-mimicking capabilities. When

TABLE I: Summary of detection results (AUC) for baseline attacks with interactive DVFS governor

One-Class SVM

LSTM

Attacks Benign Face Detection | Video Encoder‘SHA-S KMAC ‘ Room Navigation | GeoMean || Face Detection | Video Encoder | SHA-3 KMAC |Room Navigation | All Benign Apps | GeoMean
C"‘CC}LZIS:’EVI“‘ 0.9964 0.9996 0.9880 0.9558 0.9848 0.9985 0.9847 1.0000 0.9615 0.9917 0.9861
Mem"é{l’:ﬁelcove“ 0.9938 1.0000 0.9814 0.9179 0.9727 0.9969 0.9816 0.9999 0.9589 0.9898 0.9842
Spectre 0.9980 0.9879 0.9763 0.9919 0.9885 0.9974 0.9821 0.9939 0.9956 0.9962 0.9822
Rowhammer 0.9928 0.9999 0.9777 0.9850 0.9863 0.9972 0.9828 1.0000 0.9823 0.9898 0.9906
GeoMean 0.9927 0.9968 0.9828 0.9622 0.9975 0.9828 0.9984 0.9745 0.9919

evaluating power-anomaly detectors against evasive malware,
we study detection results against evasive malware with vary-
ing bandwidth (hence, varying ability to mimic power). This
way, our work reveals the operating range of power-anomaly
detectors. Our threat model (§ II) requires a detector to identify
anomalies from expected behaviors and make a binary decision
on power traces: benign or malicious. Power-anomaly detectors
classify a given input power trace as benign or malicious by
producing a score indicating the likelihood of the input trace
being malicious. Since our threat model aims to detect 0-day
architectural attacks and malware, it is important for us to
perform training only on the power traces of benign applications.
Hence each malware is presented to our detectors as a 0-day
exploit. When training different machine learning algorithms,
we use S-fold cross-validation to determine the best model
specific parameters for each classifier. Cross-validation prevents
detectors from over-fitting the benign samples in the training set.

We evaluate trained detectors using Receiver Operating Char-
acteristic (ROC) Curve and Area Under Curve (AUC). ROC
Curve illustrates the effectiveness (true positive vs. false pos-
itive) of a binary classifier when varying its discrimination
threshold. AUC reflects the probability that a classifier would
assign a higher score to a randomly chosen true positive input
than to a randomly chosen true negative input. In malware
classification, a malicious input is considered positive.

2) Machine Learning Classifiers: We explore three different
ML algorithms that are commonly used in our setting: radius-
distance based nearest neighbor (RBNN) classifier, one class
support vector machine (ocSVM), and vanilla long short term
memory (LSTM). Feature extraction and selection in frequency-
domain is widely used to reduce measurement noise. we use
Discrete Wavelet Transform (DWT) for features extraction to
capture both time- and frequency-domain information. Detect-
ing anomalies using power trace is a time-series classification
problem. However, for classifiers that are not initially designed
for time-series classification (e.g., RBNN and ocSVM), it is
useful to build a model (selecting features) to capture both
short and long term similarity in traces. To that end, we use
Bag-of-Words model [72]. Bag-of-Words model treats feature
vectors in each time window as a document of words and forms
a codebook from them and assigns code for each feature vector.
Radius-Distance Based Nearest Neighbor Classifier: RBNN
is trained on code representation of Bag-of-Words model for all
possible benign applications in the system (§ V-A), and predicts
a power trace to be either one of the benign applications or an
outlier based on a radius-distance threshold.

One-Class Support Vector Machine: ocSVM is a commonly
used unsupervised ML algorithm for anomaly classification. It
is also trained atop the Bag-of-Words model, except that each
ocSVM instance is only trained on power traces from a single
benign application and classifies if a power trace indeed shows
expected behavior. In practice, it is possible to deploy multiple

0ocSVM detectors to a mixed workload system.
Long Short Term Memory: LSTM is a recurrent neural
network (RNN) that is specifically designed for time-series
classification. It captures the dependency information in the
trace. We refer readers to the manuscript [73] for further
technical details. We train a small vanilla LSTM on extracted
feature vectors from DWT for all benign applications, without
the Bag-of-Words model, during which we use our best effort
to determine parameters yielding effective classification results.
3) Parameters: We use Bag-of-Words model for RBNN and
ocSVM. Prior work [72] suggests that size of codebook in
the Bag-Of-Words model is an important parameter. A larger
codebook might capture more patterns, however, it might also
degrade detection performance due to sparsity in the resulting
code representation of power traces. Large codebook size re-
quires more computation and has longer detection latency.
Besides the specific algorithms used and their corresponding
parameters, sampling related parameters must be considered
when designing power-anomaly detectors. First, sampling gran-
ularity plays an important role. Indeed, prior work [6]—[8] all use
relatively fine grained sampling method to gain insights from
program executions. In our experiments, by contrast, we aim
to evaluate effectiveness of embedded detectors that leverage
realistic, coarser-grained sampling methods, i.e. sub-Kilo Hz
sampling frequency while system operates at GigaHz. We sweep
the sampling period from Sms, 10ms, 20ms, 40ms, to 80ms
and found that at a practical sub-Kilo Hz range, finer grained
sampling provides better detection performance. However with
further fine-grained sampling capability, the cost of the power
sensor increases beyond practicality for the embedded deploy-
ment. Second, the length of the time window used for each
detection decision, Time-to-Detection (TTD), is also crucial to
a detector’s performance. While increasing detection latency,
longer TTD provides more insights of program behaviors.

C. Operating Ranges of Detectors

Among the three algorithms, RBNN fails to detect baseline
malware. We explore the design space for RBNN by varying
feature extraction algorithms, codebook sizes, and distance func-
tions. RBNN produces results with AUCs lower than 0.7 in most
cases. The underlying reason is that each feature contributes
equally in the distance function to decisions made by RBNN,
while different features usually characterize a class differently.

Our results show that the rest two (ocSVM and LSTM) de-
tectors have near perfect detection performance against baseline
malware. Table I summarizes the detection results for these
two effective classifiers. Each column in the table gives the
AUC values of the best performing parameter configurations
of detectors trained on a certain benign application to capture
several micro-architectural attacks. The AUC results presented
in Table I validate that the baseline malware are indeed almost
perfectly identified. Note that each entry shows the result of

1.0 4
0.9
0.8
Y074
©
a4
o 061
2
£ 0.5
w0
(o]
2 0.4
(]
>
e
= 0.3 1 Baseline Cache Covert-Channel Malware
Evasive malware with 36X Bandwidth Reduction
0.2 1 —— Evasive malware with 20X Bandwidth Reduction
—— Evasive malware with 10X Bandwidth Reduction
0.1 1 - Evasive malware with 6X Bandwidth Reduction
—— Evasive malware with 5X Bandwidth Reduction
0.0 Evasive malware with 4X Bandwidth Reduction
T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0
False Positive Rate
(a) ROC of LSTM
1.0 =
0.9 ,‘
0.8
Y074
©
o
o 061
2
= 054
w0
(o]
& 0.4
(]
>
—
= 0.3 1 Baseline Cache Covert-Channel Malware
Evasive malware with 36X Bandwidth Reduction
0.2 1 —— Evasive malware with 20X Bandwidth Reduction
—— Evasive malware with 10X Bandwidth Reduction
0.1 1 —— Evasive malware with 6X Bandwidth Reduction
—— Evasive malware with 5X Bandwidth Reduction
0.0 Evasive malware with 4X Bandwidth Reduction

T T T T T
00 01 02 03 04 05 06 07 08 09 10

False Positive Rate
(b) ROC of ocSVM

Fig. 10: Both detectors achieve better Area Under Curve against less
evasive covert-channel attacks.

AUC for classification between a benign application and a
malware—manner. The single benign application columns show
detection performance when the power-anomaly detector is used
as a tailored detector. The penultimate column (from the right),
in addition, presents the results when power-anomaly detector
uses LSTM classifier as a generic detector, classifying between
all benign applications and malware. Across all different benign
settings, both classification algorithms detect baseline Spectre
and rowhammer attacks with high AUC. This is because of
the simple and regular power signatures of baseline Spectre
and rowhammer attacks. For both classification algorithms, the
detection results drop slightly when detectors are tailored to
protect the room navigation application. This is due to the
fact that the room navigation runs on top of the multiprocess
ROS framework. Indeed, besides the benign room navigation
application, ROS runs separate processes that perform system
status logging and inter-process message passing. Experiments
performed with DVFS off show close and sometimes better
detection performance and similar trend with room navigation.

We further show the operating range of detectors by evalu-
ating them against different evasive malware. Fig. 10 illustrates

TABLE II: Resource utilization by hierarchy!

Module | Logic Cells | Memory (9kb) | DSP (9x9)
_NIOS It 3018 58 4
microcontroller
SDRAM burst
controller 1539 0 0
Hardware timer 150 0
Others” 303 2 0
Total 5046 60 4

! Resource on Cyclone-IV EP4CE22F17C6.
2 Others include UART controller, PLL and debug interface, and sld hub infrastructure.

the detection performance of ocSVM and LSTM with corre-
sponding best parameters derived at training time. Specifically,
TTD is set to 500ms, sampling granularity is set at Sms for
both classifiers. In addition, results for ocSVM showed in
Fig. 10b is trained with Bag-of-Word codebook size of 200.
For LSTM, a network of 3 layers with 20 hidden states is
used. These classifier configurations give the best performance
against all baseline malware, hence we further evaluate these
parameters of ocSVM and LSTM against evasive malware. We
stop tweaking evasiveness of attacks when either they no longer
succeed or AUC (detection performance) of both detectors drop
below 0.7. The AUC values for LSTM detector against evasive
malware ranges from 0.5859 to 0.9538 for power-mimicking
covert-channel attacks that reduce bandwidth from 36x to 4x.
Meanwhile, the detector using ocSVM produces AUC of 0.6882
when cache-based covert-channel reduces its effectiveness by
36x. Similarly, when the Spectre attack drops its bandwidth
from 7.1 to 1.0 bps, AUC produced by LSTM and ocSVM
drop to 0.9124 and 0.8671 respectively.

D. Detector Prototype on a Low-Cost FPGA

We prototype the out-of-band detector using ocSVM on a
low-cost FPGA to demonstrate its simplicity. We use a DEO-
Nano with Cyclone-IV FPGA. We configure a NIOS-II softcore
to execute the detection software. This processor uses the NIOS-
II/f configuration with a 32-bit RISC architecture with 16kB of
instruction cache, 32kB of data cache, and a 32MB of SDRAM.
Table II shows the FPGA resource utilization. While we proto-
type on a small FPGA, further energy-constrained environments
can leverage the significant research into low-power and real-
time ML classifiers (SVM and LSTM specifically) [74], [75].

We port the detection software with a 500ms TTD. The
entire detection software has a code size of 216Kb. The total
cycle count is approximately 48M, which corresponds to 480
milliseconds with the operating clock frequency of 100MHz.
Note that, this value is smaller than the target TTD of 500ms. As
expected, due to the large number of multiplications, codeword
assignment is the timing bottleneck of the detection, which takes
around 82.21% of the total cycles.

VI. CONCLUSIONS

Rowhammer attacks on DRAM and side- and covert-channel
attacks on shared micro-architecture are here today. Forth-
coming memory technologies and hardware substrates will no
doubt motivate further instruction-driven abuse of hardware. In
this setting, long-term embedded systems will find continually
adding in-band defenses and getting the system re-certified to
be extremely expensive. An out-of-band detector is thus critical
for high-assurance embedded systems. We demonstrate that
micro-architectural attacks are extremely noisy when observed
through the power channel — rowhammer does not succeed and

covert/speculative channels have to slow down considerably
even if the attacks attempt evasion by hiding behind benign
programs. Power-anomaly is thus a simple and effective defense
compared to ones that rely on new hardware or OS techniques,
and introduces smart power management units and software
defined batteries as trustworthy out-of-band security monitors.

VII. ACKNOWLEDGEMENT

This work was supported in part by Lockheed Martin, and
by the National Science Foundation under Grants No. 1850373
and 1527888.

(1]
(2]
[3]
s
(6]
(7]
(8]
[9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[34]
[33]

REFERENCES

S. Gollakota et al., “They can hear your heartbeats: Non-invasive security
for implantable medical devices,” SIGCOMM, 2011.

D. Benjamin, “TLS ecosystem woes—why your crypto isn’t real world
yet,” 2018, Real World Crypto Symposium.

Intel, “Microcode revision guidance,” Tech. Rep., 2018.

S. Grover et al., “The internet of unpatched things,” FTC PrivacyCon.
N. Sehatbakhsh et al., “Syndrome: Spectral analysis for anomaly detection
on medical iot and embedded devices,” in HOST 18, 2018.

A. Nazari et al., “EDDIE: Em-based detection of deviations in program
execution,” in ISCA ’17. ACM, 2017.

Y. Han et al., “Watch me, but don’t touch me! contactless control flow
monitoring via electromagnetic emanations,” in CCS /7. ACM, 2017.
Y. Liu et al., “On code execution tracking via power side-channel,” in
CCS ’16. ACM, 2016.

J. Herndndez Jiménez et al., “Towards a cyber defense framework for
scada systems based on power consumption monitoring,” in HICSS ’17.
C. R. Aguayo Gonzilez et al., “Power fingerprinting in sdr integrity
assessment for security and regulatory compliance,” Analog Integrated
Circuits and Signal Processing, 2011.

J. H. Reed et al., “Enhancing smart grid cyber security using power
fingerprinting: Integrity assessment and intrusion detection,” in FIIW ’]2.
H. Genc et al., “Flying IoT: Toward low-power vision in the sky,” IEEE
Micro, 2017.

M. P. Singh et al., “Evolution of processor architecture in mobile phones,”
International Journal of Computer Applications, 2014.

M. Lipp et al., “Armageddon: Cache attacks on mobile devices,” in
USENIX Security '16. USENIX, 2016.

V. van der Veen et al., “Drammer: Deterministic rowhammer attacks on
mobile platforms,” in CCS ’16. ACM, 2016.

P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
S&P’19, 2019.

M. Lipp et al., “Meltdown: Reading kernel memory from user space,” in
USENIX Security’18, 2018.

D. Wagner et al., “Mimicry attacks on host-based intrusion detection
systems,” in CCS "02. ACM, 2002.

A. Tang et al., “Unsupervised anomaly-based malware detection using
hardware features,” in RAID ’14. Springer, 2014.

K. N. Khasawneh et al., “Rhmd: Evasion-resilient hardware malware
detectors,” in MICRO ’17. ACM, 2017.

M. Kazdagli et al., “Quantifying and improving the efficiency of hardware-
based mobile malware detectors,” in MICRO ’16, 2016.

T. Zhang et al., “New models of cache architectures characterizing
information leakage from cache side channels,” in ACSAC ’14.

O. Mutlu, “The rowhammer problem and other issues we may face as
memory becomes denser,” in DATE 17, 2017.

A. Badam et al., “Software defined batteries,” in SOSP ’15. ACM.

J. Han et al., “Smart home energy management system including renew-
able energy based on ZigBee and PLC,” IEEE Transactions on Consumer
Electronics, 2014.

D. Dash et al., “When gossip is good: Distributed probabilistic inference
for detection of slow network intrusions,” in AAAI’06. AAAI Press.

C. V. Zhou et al., “A survey of coordinated attacks and collaborative
intrusion detection,” Comput. Secur., 2010.

E. Vasilomanolakis et al., “Taxonomy and survey of collaborative intrusion
detection,” ACM Comput. Surv., 2015.

A. Reina et al., “A system call-centric analysis and stimulation technique
to automatically reconstruct android malware behaviors,” EuroSec, 2013.
M. Ozsoy et al., “Hardware-based malware detection using low-level
architectural features,” IEEE Transactions on Computers, 2016.

K. N. Khasawneh et al., “Ensemble learning for low-level hardware-
supported malware detection,” in RAID ’15. Springer, 2015.

C. Hunger et al., “Understanding contention-based channels and using
them for defense,” in HPCA ’15. 1EEE, 2015.

O. Aciicmez et al., “On the power of simple branch prediction analysis,”
in ASIACCS ’07. ACM, 2007.

Y. Wong et al, “Patch-based probabilistic image quality assessment
for face selection and improved video-based face recognition,” in /IEEE
Biometrics Workshop, CVPR Workshops. 1EEE, 2011.

10

[54]
[55]
[56]
(571
(58]

(591
[60]

[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74]

[75]

F. Liu et al., “Catalyst: Defeating last-level cache side channel attacks in
cloud computing,” in HPCA ’16, 2016.

Z. Wang et al., “Covert and side channels due to processor architecture,”
in ACSAC ’06, 2006.

D. Evtyushkin et al., “Covert channels through random number generator:
Mechanisms, capacity estimation and mitigations,” in CCS ’'16.

Z. Wu et al., “Whispers in the hyper-space: High-speed covert channel
attacks in the cloud,” in USENIX Security '12. USENIX, 2012.

A. Shafiee et al., “Avoiding information leakage in the memory controller
with fixed service policies,” in MICRO ’15. ACM, 2015.

NIST, “CVE-2018-3639,” 2018.

J. V. Bulck ef al., “Foreshadow: Extracting the keys to the intel SGX
kingdom with transient out-of-order execution,” in USENIX Security 18.
ARM, “Speculative processor vulnerability,” Tech. Rep., 2018.

Intel, “Initial performance data for data center systems,” Tech. Rep., 2018.
Y. Kim et al.,, “Flipping bits in memory without accessing them: An
experimental study of dram disturbance errors,” in ISCA’14, 2014.

M. Seaborn et al., “Exploiting the dram rowhammer bug to gain kernel
privileges,” Black Hat, 2015.

Y. Xiao et al., “One bit flips, one cloud flops: Cross-vm row hammer
attacks and privilege escalation,” in USENIX Security 16. USENIX.

R. Qiao et al., “A new approach for rowhammer attacks,” in HOST ’16.
Y. Wang et al., “Timing channel protection for a shared memory con-
troller,” in HPCA 14, 2014.

Y. Zhang et al., “Homealone: Co-residency detection in the cloud via
side-channel analysis,” in SP 11, 2011.

A. Moser et al., “Limits of static analysis for malware detection,” in
ACSAC 07, 2007.

D. Arp et al., “Drebin: Effective and explainable detection of android
malware in your pocket.” in NDSS, 2014.

J. Demme et al., “On the feasibility of online malware detection with
performance counters,” in ISCA '13. ACM, 2013.

S. S. Clark et al., “Wattsupdoc: Power side channels to nonintrusively
discover untargeted malware on embedded medical devices,” in 2013
USENIX Workshop on Health Information Technologies.

L. Liu et al., VirusMeter: Preventing Your Cellphone from Spies. Springer,
2009.

J. Hoffmann et al., Mobile Malware Detection Based on Energy Finger-
prints — A Dead End? Springer, 2013.

H. Kim et al., “Detecting energy-greedy anomalies and mobile malware
variants,” in MobiSys ’08. ACM, 2008.

J. P. B. Dixon, S. Mishra, “Time and location power based malicious code
detection techniques for smartphones,” in JEEE NCA 14, 2014.

L. Caviglione et al., “Seeing the unseen: Revealing mobile malware hidden
communications via energy consumption and artificial intelligence,” IEEE
Transactions on Information Forensics and Security, 2016.

K. Wang et al., “Anagram: A content anomaly detector resistant to
mimicry attack,” in RAID ’06. Springer, 2006.

A. Zimek et al., “A survey on unsupervised outlier detection in high-
dimensional numerical data,” Statistical Analysis and Data Mining: The
ASA Data Science Journal, vol. 5.

“The big hack: How china used a tiny chip to infiltrate u.s. companies -
bloomberg,” https://www.bloomberg.com, (Accessed on 10/17/2018).

X. Zheng et al., “Accurate phase-level cross-platform power and perfor-
mance estimation,” in DAC’16, 2016.

S. Arimoto, “An algorithm for computing the capacity of arbitrary discrete
memoryless channels,” IEEE Transactions on Information Theory, 1972.
R. Blahut, “Computation of channel capacity and rate-distortion func-
tions,” IEEE transactions on Information Theory, 1972.

F. Vahid et al., “Platform tuning for embedded systems design,” Computer,
2001.

M. R. Guthaus er al., “Mibench: A free, commercially representative
embedded benchmark suite,” in IEEE WWC-4, 2001.

T. Reed et al., “Skynet: A 3g-enabled mobile attack drone and stealth
botmaster.” in WOOT, 2011.

Q. Wu et al., “Cognitive internet of things: A new paradigm beyond
connection,” IEEE Internet of Things Journal, 2014.

D. Floreano et al., “Science, technology and the future of small au-
tonomous drones,” Nature, 2015.

J. M. Kelsey et al., “Sha-3 derived functions: cshake, kmac, tuplehash and
parallelhash,” Special Publication (NIST SP)-800-185, 2016.

M. Quigley et al., “Ros: an open-source robot operating system,” in /CRA
Workshop on Open Source Software, 2009.

J. Wang et al., “Bag-of-words representation for biomedical time series
classification,” Biomedical Signal Processing and Control, 2013.

F. A. Gers et al., “Learning to forget: Continual prediction with lstm,”
Neural Comput., 2000.

K. H. Lee et al., “Low-energy formulations of support vector machine
kernel functions for biomedical sensor applications,” Journal of Signal
Processing Systems, 2012.

S. Han et al., “Ese: Efficient speech recognition engine with sparse lstm
on fpga,” in FPGA '17. ACM, 2017.

https://www.bloomberg.com

