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Abstract—Recent research in privacy-preserving systems relies on
state-of-the-art defenses to close the termination timing channel. In
this paper, we challenge the effectiveness of the adopted state-of-the-art
defenses. In particular, we show that the two known practical defenses—
predictive mitigation [5], [89] and fuzzy-clock [34], [49]—offer insufficient
and unpredictably biased protections for general-purpose programs. To
quantify this weakness, we introduce a new metric called “tail victim,”
which measures the fraction of secret inputs that unpredictably suffer
the worst privacy leakage even after applying existing mitigations.

To substantiate our findings, this paper first examines—for a range
of privacy-sensitive applications, including web browsers, databases, and
graph analytical programs—the leakage of input privacy through the
termination timing channel. This paper then sheds further light on
the leakiness of the state-of-the-art defenses for the termination timing
channel, using the “tail victim” metric (1) to evaluate predictive mitigation
and fuzzy-clock in above programs, (2) to evaluate real-world side-
channel mitigations deployed in the Tor browser, and (3) to evaluate
secure hardware designs that mitigate specific channels in isolation.

I. INTRODUCTION

The decades-old termination timing channel [39] leaks secret keys
from cryptographic software through the amount of time used to
execute cryptographic operations. Early work in side-channel de-
fenses focused on defending the most sensitive workloads—namely,
cryptographic kernels and keys—and this channel has been effectively
closed for these cryptographic kernels, which have simple character-
istics, such as short bit-length bounded loops, that make them easy
to defend.

However, a wide variety of programs, including web browsers [52],
ML classifiers [8], data storage [42], and serverless functions [67],
require protections beyond just cryptographic keys. Unfortunately,
existing termination timing channel elimination defenses for crypto-
graphic software cannot be practically extended to general-purpose
programs because these defenses restrict program behavior like
network I/O, syscalls or paging (§ II-A).

As we move to defend privacy-sensitive applications, it is vital
that we close this channel, because it is easily accessible to attackers
from the entire hardware-software stack. For example, unprivileged
adversaries can observe termination timing using contention on sys-
tem services and on resources such as random number generators and
virtual memory bookkeeping; they can use hardware contention on
shared caches and bus bandwidth; and they can use physical signals
such as power and electromagnetic radiation. Termination timing
can also be measured remotely via network traffic or observed via
external APIs. Moreover, in enclave or cloud environments, privileged
attackers manage scheduling, memory management, and resource
access control, which can all be used to leak termination timings.

Moreover, as a coarse-grained side channel, the termination timing
channel is easy to exploit, requiring fewer measurements than fine-
grained channels in microarchitectural resources like caches (§ IV-B).
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Fig. 1: Percentage of inputs that are leaked with over 90% top-3
accuracy even after applying predictive mitigation.

One single measurement is sufficient to initiate an attack. Repeated
measurements can be leveraged with statistical or ML-based methods
to improve accuracy and precision.

In this paper, we revisit the blindly relied upon mitigations for
the termination timing channel. Using a broad class of privacy-
sensitive applications, we show that the only practical state-of-the-
art mitigations, predictive mitigation [5], [89] and fuzzy-clock [34],
[49], which are commonly relied upon in privacy-preserving systems
(elaborated in § II-A), break in unpredictable ways when used to
defend a broader class of programs than cryptographic kernels (§ V).
Here, “unpredictable” means that the defense breaks for certain inputs
and certain programs, but it’s difficult to know a priori when these
breakdowns will occur. To quantify this weakness, we introduce the
tail-victim metric (§ III), which measures the faction of victims that
suffer the worst leakage in terms of input indistinguishability.

For example, Fig. 1 shows the percentage of tail victims that
are still leaked with over 90% top-3 accuracy in a fingerprinting
attack, even after applying predictive mitigation to our tested privacy-
sensitive applications. For instance, in Chrome, close to 9% of our
tested websites are still leaked with over 90% accuracy. Even worse,
although predictive mitigation reduces input indistinguishability on
average, its protections are distributed nonuniformly across the secret
space, so some inputs become more distinguishable than without
predictive mitigation, and it’s difficult to predict which inputs will be
affected negatively by predictive mitigation. Similarly, the protection
from fuzzy-clock is inconsistent across programs: The randomness
that works for one program may not sufficiently hide private inputs
for others, and for some inputs the randomness may unnecessarily
increase overhead.

We provide a detailed evaluation of predictive mitigation [5], [89]
and fuzzy-clock [34], [49] in § V. We show that as we move away
from defenses of cryptographic kernels, predictive mitigation ampli-
fies leaks for inputs that are close to the time-boundary where the
defense doubles its guess for the execution time (scheme described
in V-A). On average, in our browser setup, predictive mitigation
reduces attacker accuracy to 10.7% top-3, but the 93%tile tail-victim
is classified with 100% accuracy for top-3 candidates. Similar to
tail-latency, the tail-victim metric measures the worst-case leakage
on a per-input basis. Across programs, on average 2.51% of the
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secrets are left unprotected with over 90% top-3 accuracy. We also
show that fuzzy-clock works inconsistently. For example, a fuzzy-
clock scheme fitted for a graph analytics program can reduce the
average of attacker top-3 accuracy from 56.5% to 17%, but when
the same scheme is applied to a browser, the average top-3 accuracy
is as high as 41.5%. Different programs and inputs exhibit distinct
multimodal timing distributions, so noise is insufficient to deceive
attackers. Furthermore, we use the Tor browser with to show that the
combination of predictive mitigation and the fuzzy-clock defense are
insufficient in addressing the challenge exposed by the tail-victim
metric: For fingerprinting victim websites, P95 top-3 classification
accuracy is still 46% and P99 top-3 accuracy is over 80%.

This paper also sheds light on the implications of the termination
timing channel on secure hardware designs. While adversaries can
freely choose from among numerous microarchitectural resources
to mount side-channel attacks, most solutions treat the termination
timing channel as out of scope. However, doing so can leave a
security gap for any threat model that allows attackers to measure
the termination timings. We show that despite significant effort, re-
designs of structures such as caches [60], [61], [83] or memory
controllers [23], [24], [48], which aim to close various side channels
for general-purpose programs, are still vulnerable to the termination
timing channel (§ VI).

Specifically, we simulate betweenness centrality analysis of the
USAroad location graph using the cycle-accurate full-system Gem5
simulator. An attacker confronted with a secure randomized cache
cache [83] still achieves a 72.9% top-3 input-distinguishability (§ III);
if we instead use a static-rate Path Oblivious-RAM [24], the attacker
achieves a 95.4% top-3 input-distinguishability, with P50 tail-victims
classified at nearly 100% (Fig. 16c). By contrast, our simulated
baseline without side-channel resilient hardware shows only 67.8%
top-3 input-distinguishability. Thus, architects need to consider the
findings in this paper before placing point defenses against side-
channel attacks into the microarchitecture. Otherwise, we could
end up with a CPU with constant-time floating-point arithmetic,
randomized and partitioned caches, and ORAM memory controllers,
all with perhaps 100× throughput cost, yet still leak users’ private
inputs. For instance, ORAM-defense Phantom [48] aims to provide
input privacy, but without termination timing channel protection, it
does not provide input-indistinguishability for broader applications.

In summary, this paper makes the following contributions:

• We show that two state-of-the-art methods, predictive mitiga-
tion [5], [89] and fuzzy-clock [34], [49], which much prior research
builds upon to close the termination timing channel, are unpredictably
broken for broader applications (§ V) because they neglect the
unpredictable timing distribution of programs and inputs.
• We introduce the tail victim metric (§ III), which quantifies the
resulting privacy leakage of unreliable defenses. Tail victim measures
the fraction of victims that suffer the worst leakage according to the
input-distinguishability.
• We substantiate these findings using a set of real-world privacy-
sensitive programs, including the PostgreSQL database, the GAP
graph analytical programs, the Chrome browser, and the privacy-
focused Tor browser.
• In addition to revealing the privacy impact that the termination
timing channel has on broader applications, we reveal the implications
of the termination timing channel for the secure side-channel resilient
hardware (§ VI).

II. BACKGROUND AND RELATED WORK

Program execution time leaks secrets as often demonstrated on
cryptographic kernels [4], [11], [28], [39]. Termination time is
defined as the length of an observable trace of program execution.
For example, termination time can be determined by the dynamic
instruction count or wall-clock time. As an observation channel,
similar to side and covert channels in networking, an attacker in the
termination timing channel passively observes a victim’s behavior.

In this section, we first discuss the termination timing channel
defenses and survey the literature of integrating such defenses in
secure systems. Then, we discuss the related work in evaluating side-
channel defenses like predictive mitigation.

A. Termination Timing Channel Defenses

Abundant efforts are spent in cryptography libraries to eliminate
secret-dependent timing. These libraries ensure constant-time oper-
ations on secret keys, both by improving the algorithm [12], [16],
[38], [41], [59] and by utilizing constant-time hardware [30], [47].
Researchers also proposed code-transformation techniques [9], [84]
to make observable timing secret-independent for non constant-time
programs. However, both Constantine [9] and SC-Eliminator [84] are
designed for cryptographic software. SC-Eliminator relies on crypto-
specific characteristics (e.g., bit-length bounded loops) to secure
secret-dependent loops. Complex application behavior, such as secret-
dependent syscalls and memory-mapped I/O create pathological sce-
narios for both. Moreover, compiler-enforced constant-time invariant
can be broken by published or undocumented hardware optimizations
(e.g., hardware store elimination).

Padding is another important primitive used in many defenses.
Most notably, padding to worst-case execution time (WCET), in
theory, closes the termination-timing channel. However, for broader
applications, WCET results in tremendous overhead (§ IV-C).
Execution-Leases [77] explored hardware-enforced per-function
WCET, which outperforms end-to-end WCET. However, both
hardware- [77] and software-enforced [10] WCET are evaluated using
only short/cryptographic kernels, and greatly restrict protected pro-
gram behavior. For instance, they prohibit syscalls, blocking I/Os, and
paging. Meanwhile, bounded padding enjoys better performance by
forceful early termination. Haeberlen et al. [31] proposed Fuzz, using
bounded padding, tailored for differential-private database queries.
Despite trading off query accuracy and utility, the bounded padding
defense could incur 2.5−6× overhead. This tradeoff between utility
and privacy, however, is prohibitive for applications that rely on
correct and complete executions.

Some mitigations trade off security for better performance and
generalizability. Techniques such as predictive mitigation [5], [89] ad-
dress the termination timing channel by predicting an execution time
and exponentially doubling the padded execution time if the program
doesn’t terminate by the predicted time. fuzzy-clock techniques [34],
[49] add noise to obfuscate the termination timing channel through
randomly delaying the external observable termination event.

Predictive mitigation and fuzzy-clock remain the only applica-
ble state-of-the-art defenses today for privacy-sensitive applications
beyond cryptographic kernels, since both code transformation and
WCET padding techniques fail to handle complex application behav-
iors like paging, I/O, and other syscalls.

B. Integrating Termination Timing Channel Defenses

To close the termination timing channel in secure systems for
general-purpose programs, some designs employed WCET [35], [36],
with worst-case performance. Many others choose to mitigate this
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channel. For example, predictive mitigation is widely employed in
software-based solutions [7], [14], [29], [37], [54], [55], [62], [64],
[72], [73], [76], [85], [90]. In the hardware context, an Instruction
Set Architecture was designed to facilitate predictive mitigation [88],
and two ORAM designs [24], [32] employed predictive mitigation.

Nonetheless, in our limited survey, at least 40 research papers
acknowledge but disregard the termination timing channel. These
studies target various threats of a secure system and generally
consider the termination timing channel as an orthogonal issue, under
the assumption that predictive mitigation has effectively closed this
channel. However, we debunk this assumption in § V.

Specifically, six papers [2], [50], [57], [71], [94], [95] focusing
on enabling privacy-preserving applications using hardware enclaves
opt to exclude the termination timing channel from their scope. Sim-
ilarly, six language and software runtime research focusing on using
information flow security to defend against side-channel attacks [3],
[58], [66], [78]–[80] also deem this channel out of scope.

In the hardware context, while numerous attacks [75] have been
demonstrated on resources like memory bandwidth, address trace,
caches, TLBs, functional units, and predictors, architects have fo-
cused mitigations on each side channel in isolation. That is, side-
channel-resilient hardware designs are proposed for each vulnerable
component. Therefore, it is not hard to find that recent defenses
designed for closing specific microarchitectural side channels [1],
[2], [6], [21], [22], [25], [45], [48], [63], [82], [94] acknowledge but
ignore the termination timing channel.

To illustrate the importance of considering the termination timing
channel, our work investigates similar observation channels in the
microarchitecture. We discuss the last-level cache (LLC) and memory
address trace side channels, which have drawn significant attention.
To thwart such channels, side-channel-resilient designs seek to shape
or obfuscate the observable trace. Some defenses add noise [96]
or “fuzz” clocks [34], [40], [49] to the attacker’s observations.
Unfortunately, averaging or filtering techniques removes such noise
with repeated observations [11], [65]. To obfuscate the observable
traces, some designs leverage cryptographic randomness [46], [61],
[83] to hide the victim access patterns. To combat the memory address
trace side channel, Oblivious-RAM (ORAM) [26], [27], [74] with
cryptographic guarantees that the trace is indistinguishable from a
random trace, has been used in many hardware defenses [23], [24],
[44], [48].

C. Related Work

Past work discussed in § II-A and II-B studied the average or
upper bound of leakage in the termination timing channel. We
raise the privacy issue that state-of-the-art solutions (e.g., predictive
mitigation) unfairly and unpredictably protects inputs and introduce
the tail-victim metric to quantify such weakness.
Limitation of predictive mitigation. Dantas et al. [18] observe
that, for cryptographic kernels, non-deterministic termination event
delivery results in a broader distribution of observable timings of
the same input. This paper quantifies leakage (§ IV) in privacy-
sensitive programs beyond cryptographic kernels. We also reveal a
fundamental limitation (§ V) that the unmitigated termination timing
of those programs may unpredictably fall across epoch boundaries in
predictive mitigation, leaving a range of tail victims not protected.
Side-Channel metrics. Side-channel defenses are often measured
with classic metrics such as mutual information or leakage bit-
per-second. Several newly proposed metrics also advance the state
of side-channel evaluation. They include probabilistic information
flow graph (PIFG) [33] from He et al., Side-Channel Vulnerability

Factor (SVF) [19], [20] by Demme et al., and Cache Side-channel
Vulnerability (CSV) metric [91] by Zhang et al.. Overdorf et al. [53]
investigate the fingerprintability as a metric for onion services under
the network traffic side channel. Similar to the input-distinguishability
proposed in this paper, they also criticize the use of aggregated
metrics in evaluating side-channel defenses, and advocate a per-
service analysis for defenses.

III. METHODOLOGY

To analyze the threat of the termination timing channel for general-
purpose programs, and the limitations of the state-of-the-art defenses,
we perform secret-input fingerprinting attacks on these programs.
The goal of an attacker is to learn the class of the inputs that
the program is executing on. In such an attack, adversaries profile
offline a targeted subset of inputs and guess the victim secrets online.
Statistical and ML methods have been explored (e.g. [81]) to improve
fingerprinting in open-world settings, where victims may supply non-
profiled inputs. In all experiments, we profile 25 timing samples for
offline training, and use a separate set of 8 samples to test the online
attack. The attacker uses Kolmogorov-Smirnov test for comparing
distribution similarity to guess secrets. Candidates are sorted based
on the probability of matching the online measured distribution to
each offline profiled distribution.
Privacy-Sensitive suite: We study several privacy-sensitive general-
purpose programs, such as a browser, a database, and graph algo-
rithms, each with respective confidentiality property. We also include
the AES and RSA crypto kernels as baseline.

For this test suite, we characterize the confidential inputs as
follows: For browsers, the attacker’s goal is to fingerprint the website
origins visited by the victim. We use product shipping dates, volume,
and revenue in TPC-H. Such secrets are often used in supporting pro-
prietary business decisions. Here, the attacker is interested in learning
the sensitive query inputs to the database. GAP programs perform
analytics on graphs that represent social identities, geographical-
locations, and web origins. The attacker’s goal is to identify personal
information, road locations, and website ownership, respectively.
Normalized Mutual Information (NMI): We use NMI [17] to
estimate the leakage of secret keys in crypto kernel implementations
from termination timing channel. Mutual information is a commonly-
used information-theoretic measure that describes the number of bits
about one variable may be learned from knowing the other. NMI, a
relative metric between 0 and 1, normalizes the mutual information
between variables X and Y towards the sum of the their entropy
H(X ) and H(Y ). In side-channel context, mutual information has
been used as a measure on the “amount of information” that traces
Y may provide about secrets X .
Tail victims and input-distinguishability: For general-purpose
programs, we define input-distinguishability as how accurately
an attacker can distinguish secret inputs. We use top-k input-
distinguishability, where the secret input lies in an attacker’s first
k guesses, i.e., a top-1 input-distinguishability of 60% thus means
the first guess is correct 60% of the time. This metric increases
monotonically as an attacker makes more guesses (i.e., from top-1 to
top-9), and can be represented as a stacked bar-graph. Furthermore,
we introduce the tail victim metric by sorting the private victims based
on input-distinguishability, and measure the fraction of victims that
suffers the worst leakage. For example, P90tile tail victim reports the
input-distinguishability of a victim who suffer a leakage larger than
at least 90% of the inputs. Therefore, the term tail victims refers to
the inputs that are least protected.
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Experimental setup: In § IV and V, we evaluate the leakage of
cryptographic and general-purpose programs. Specifically, we use
Chrome (v85) with AlexaTop200 websites, PostgreSQL database
(v12.1) with TPC-H (Q1, Q5, Q15), and the GAP benchmark
suite (commit 4930a7)—betweenness centrality (BC), and breadth
first search (BFS)—with real-world graphs from the suite (Web,
Twitter, USARoad). For TPC-H, 120 inputs are uniformly selected
from the input space, while 200 nodes are randomly selected as
privacy sensitive nodes among millions in the GAP graph nodes.
In addition, we use the AES-CBC and RSA-PKCS1 implementation
in the OpenSSL library (v1.1.1e) with 200×200 random keys (pairs)
and plaintext. Experiments are run in an Ubuntu 18.04 container on
a Xeon E5-2620 v4 CPU. We assume attackers can only measure the
wall-clock time instead of fine-grained timer like dynamic instruction
or cycle count.

IV. TERMINATION TIMING CHANNEL MOTIVATION

A. Threat Model

In the termination timing channel, the attacker goal is to identify
the secret inputs to the victim application. A secret input can be
the bit-string of a program argument, or be implicit identities. For
example, attackers may learn the victim identity in a social-media
graph analytic program.

Attackers have multiple means for measuring termination timings.
A local attacker can observe via OS resource contention, bursts
of network traffic [13], microarchitecture utilization [93], or by
physically observing the off-chip bus traffic [42] or device power [43].
The termination timing channel may also be exploited from a network
attacker that (e.g.) controls a peer node/router or has access to the
victim API. Moreover, privileged attackers have direct visibility into
victims’ execution/termination status.

In all these cases, the attacker can skip analyzing fine-grained
execution traces, and use merely the length of the trace—this makes
the termination timing an extremely accessible attack vector that is
hard to plug via obfuscation techniques on network or cache traces.

Our attacker assumption is similar to [15], [43], [51], [52], [68]–
[70], [87] where we assume the attacker can either co-locate with
the victims or the attacker is hosting the service, or the attacker is
a client of the same service as the victims. For example, Software-
as-a-Service platforms like remote browsers, cloud-hosted databases,
and image classification services give attackers access to the same or
similar hardware platforms as victims. Specifically, for our browser
experiments, we assume the victim visits an adversary-controlled
website capable of measuring cache contention or querying the
browser Network Information API to infer the sensitive page loading
time. For databases, we assume an on-path network adversary can
sniff traffic bursts in requests to learn the execution time of each
query. For graph programs, we assume the attacker is the service
provider who learns termination timing through collected telemetric
traces. We collect the measurements in a system with only the
attacker and victim software. System load may affect power, cache
or interrupt-based fingerprinting attacks. Shusterman et al. [68]–[70]
conducted extensive studies across different operating systems and
hardware configurations to show the impact of such system factors.

B. Easily Exploitable

Compared to other fine-grained side channels, the termination
timing channel is powerful as it requires far fewer measurements.
We compare to two side channels that require fine-grained micro-
architectural observations of the program executions, namely the
cache occupancy [70] and the memory bandwidth [96] side channels.
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Fig. 2: Average top-1 accuracy in fingerprinting AlexaTop200 sites
using three different side channels. Attacks that use the termination
timing channel achieve comparable accuracy with 25× to 100× fewer
observations.
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Fig. 3: Timing distribution of cryptographic kernels.

Cache occupancy and memory bandwidth traces are collected using
hardware performance counters to provide accurate observations,
which favors these two side channels in the evaluation.

Fig. 2 compares the three side channels in fingerprinting Alexa-
Top200 websites. The y-axis shows the top-1 fingerprinting accuracy
achieved by the attacker while the x-axis plots the number of
measurements used in each attack. The termination timing channel
achieves comparable accuracy with 25-100× fewer measurements
than attacks using cache occupancy or memory bandwidth side
channels. To exceed 90% accuracy, the termination timing channel
requires 12 measurements while the other two use more than 1000
observations.

C. Input Privacy Leakage

Despite being easily accessible, the termination timing channel has
been effectively closed for cryptographic software (§ II-A). However,
the disparity in program behavior between cryptographic kernels and
general-purpose programs leaves the question of whether protections
extend beyond cryptographic software still open.

We start by showing that this channel leaks information in broader
applications, whereas the count of observations in cryptographic
software has been carefully engineered to be secret-independent.
Then we examine the limitations of the mere two state-of-the-art
mitigations in § V.
Cryptographic Kernels. To more accurately estimate the potential
leakage in cryptographic kernel implementations from the termina-
tion timing channel, we measure the timings using high-resolution
hardware time stamp counter.

AES and RSA kernels have way shorter termination times (less
than 1ms in our setup) and narrower ranges compared to general-
purpose programs. Fig. 3 shows the timing distribution in cycles for
AES and RSA with different keys and ciphertexts. Meanwhile, Fig. 4
shows the timing distributions for general-purpose programs are often
multimodal or with long tails.
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Fig. 4: Timing distribution of different inputs in various programs.
Notably, cryptographic kernels (Fig. 3) operate at an extremely
ephemeral time scale, while general-purpose programs span across
larger scales and various distributions.
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Fig. 5: Normalized Mutual Information (NMI) between secret inputs
and termination timing for different programs.

The NMI of AES and RSA in our experiments are 0.0266 and
0.148, respectively. This shows that the information available from
termination timing channel is low for cryptographic kernels. For
comparison, the NMIs of general-purpose programs are significantly
higher, indicating a larger probability of leakage. Fig. 5 visualizes
the difference. RSA shows slightly higher NMI than AES because
the OpenSSL builtin key blinding scheme periodically updates the
blinding seed and disturbs the timing for some program executions.
However this variation is secret key independent.
General-Purpose Programs. To model more realistic attackers, we
use a much coarser clock (micro-second) than the clock used for
cryptographic kernels. First, we visualize the timing distribution
in Fig. 4. In contrast to Fig. 3, these programs exhibit a wide range of
variations in termination timing across inputs. This enables attackers
to distinguish sensitive inputs from one another by merely observ-
ing the termination timing channel. We use input-distinguishability
(defined in § III) as a metric of program vulnerability under the
termination timing channel fingerprinting attack.

The results show that termination timing channel liberally leaks
information about sensitive program inputs across all the general-
purpose programs we tested. Specifically, Fig. 6 shows input-
distinguishability for identifying the website origins being loaded in
the Chrome web browser. X-axes in both subfigures are sorted based
on the original median termination timing of loading each website.
Fig. 6a shows detailed per-input distinguishability, while Fig. 6b
provides a clustered view (averaged within each cluster) for a better

(a) Detailed per-input view.

20% 40% 60% 80% 100%
0%

50%

100%

Top 9 Top 7 Top 5 Top 3 Top 1

(b) Clustered view.

Fig. 6: Input-distinguishability across 200 different websites from
top-1 to 9 guess. X-axis is sorted based on the original termination
timing of loading each website in Chrome. From top-1 to top-9, the
coloring goes from dark to light. Thus a darker plot indicates an
overall leakier input-distinguishability.

readability. Fig. 6 includes top-1 to top-9 input-distinguishability, as
stacked bars, colored from dark to light. Thus a darker color indicates
a leakier input-distinguishability. On average, the attacker achieves
39.0% in top-1 and 86.8% in top-5 accuracy in identifying the origins
among 200 websites. A close inspection on Fig. 6a reveals that
overall the termination timing channel fingerprints the web origins
in the Chrome with high accuracy. Websites 30 to 41 in Fig. 6a
show low input-distinguishability compared to the rest of the inputs
in the plot. This is because these websites are the same Google front
page on different top-level domains (TLDs). These websites render
extremely similarly or even display the same content which leads
to similar termination timing distributions, and consequently lower
input-distinguishability.

Fig. 7 show that besides leaking web origins in Chrome, the
termination timing channel also leaks sensitive database query inputs
like sales revenue, as well as input vertices (e.g. social identity) in
the graph analytics programs. Fig. 7 plot the clustered view of input-
distinguishability for all programs and their sensitive inputs. X-axes
are sorted based on the median termination timing of each input.

Fig. 8 summarizes the average input-distinguishability for each
program. In addition to Figs. 6 and 7, these results show that the
termination timing channel is leaky: Figs. 7a to 7c show that for 120
query input values, an attacker can classify a query-serving database
with 90.3% top-1 accuracy and 99.1% top-2 accuracy on average.
Here input-distinguishability is very high because the termination
timing is almost uniformly distributed over time depending on the
total size of the data accessed by the database. For graph analytics
programs on graphs with millions of nodes, an attacker can identify
200 random input nodes with confidence/accuracy ranging from 8%
to 56.5% top-3, or 20.5% to 81.0% top-7.

With Figs. 7d to 7f and Figs. 4a and 4b, we see that the termination
timing channel leakage varies with the timing distributions of the
secret inputs. Specifically, for program Betweenness Centrality (BC),
termination timing channel leaks on the Twitter social graph and
USARoad graph, while input-distinguishability on the “.sk domain
web” graph is low with BC. Comparing Figs. 7e and 7h shows that
input-distinguishability from the termination timing channel varies
across the programs too. Specifically, with Breadth First Search
(BFS), top-5 input-distinguishability is generally lower than 20%.

5



20% 40% 60% 80% 100%
0%

50%

100%

Top 9 Top 7 Top 5 Top 3 Top 1

(a) PostgreSQL on TPC-H Q1

20% 40% 60% 80% 100%
0%

50%

100%

Top 9 Top 7 Top 5 Top 3 Top 1

(b) PostgreSQL on TPC-H Q5

20% 40% 60% 80% 100%
0%

50%

100%

Top 9 Top 7 Top 5 Top 3 Top 1

(c) PostgreSQL on TPC-H Q15

20% 40% 60% 80% 100%
0%

50%

100%

Top 9 Top 7 Top 5 Top 3 Top 1

(d) BC on .sk domain webs

20% 40% 60% 80% 100%
0%

50%

100%

Top 9 Top 7 Top 5 Top 3 Top 1

(e) BC on Twitter social network

20% 40% 60% 80% 100%
0%

50%

100%

Top 9 Top 7 Top 5 Top 3 Top 1

(f) BC on USARoad graph

20% 40% 60% 80% 100%
0%

50%

100%

Top 9 Top 7 Top 5 Top 3 Top 1

(g) BFS on .sk domain webs

20% 40% 60% 80% 100%
0%

50%

100%

Top 9 Top 7 Top 5 Top 3 Top 1

(h) BFS on Twitter social network

20% 40% 60% 80% 100%
0%

50%

100%

Top 9 Top 7 Top 5 Top 3 Top 1

(i) BFS on USARoad graph
Fig. 7: Input-distinguishability in the termination timing channel on various programs and their sensitive inputs.

pSQL-q01

pSQL-q05

pSQL-q15

BC-on-web

BC-on-twitter

BC-on-road

BFS-on-web

BFS-on-twitter

BFS-on-road

Chrom
e

0%

50%

100% Top 9 Top 7 Top 5 Top 3 Top 1

Fig. 8: Average input-distinguishability under an attacker with 8
timing samples per input for all programs.

pSQL-q01

pSQL-q05

pSQL-q15

BC-on-web

BC-on-twitter

BC-on-road

BFS-on-web

BFS-on-twitter

BFS-on-road

Chrom
e

0%

10%

20%

Top 9 Top 7 Top 5 Top 3 Top 1

Fig. 9: Average input-distinguishability for applications with predic-
tive mitigation. Predictive mitigation seemingly reduces the average
leakage for all programs, resulting an overall input-distinguishability
lower than 10%.

However, with BC, an attacker is able to achieve over 70% top-
5 accuracy from the termination timing channel. This difference
is from the BC implementation in GAP leveraging heavily data-
dependent optimizations to obtain a fast approximation of the graph
betweenness centrality. For BFS, although it exhibits data-dependent
access patterns, it traverses down the entire graph.

One temptation left though is to leak only a few bits, which we
show next has its pitfalls.

V. STATE-OF-THE-ART SOLUTIONS ARE BROKEN

In this section, we show that two mitigations for the termination
timing channel namely, predictive mitigation [5], [89] and fuzzy-
clock [34], [49] break when protecting a broad class of privacy-
sensitive applications. Both aim to provide a tradeoff between security
and performance for broader applications, by leaking a few bits to
improve performance. Predictive mitigation enforces determinism in
termination time while fuzzy-clock leverages randomness. We assume

50 100 150 200
0%

50%

100%

Top 9 Top 7 Top 5 Top 3 Top 1

Fig. 10: Per-Input-distinguishability (on the y-axis) across different
website inputs after applying predictive mitigation to Chrome. The
X-axis is the web origins sorted as in Fig. 6. Thus, for instance,
website 38 can be distinguished by an attacker with almost 100%
accuracy.

that the attacker is able to profile the termination time of mitigated
programs across different inputs. As with our analysis in the previous
section (§ IV), we measure the attackers’ ability to distinguish among
a set of plausible inputs of attackers’ interest based on the perturbed
termination time.

A. Predictive Mitigation

Predictive mitigation [5], [89] aims to bound the amount of in-
formation leakage by bucketing program execution time into epochs.
The length in each epoch is twice that of the previous epoch: when
program termination misses the current epoch deadline, predictive
mitigation moves to the next epoch, doubling the predicted termi-
nation timing. The total execution time is padded to the smallest
enclosing epoch boundary. Predictive mitigation is the best known
practical termination timing channel solution for general privacy-
sensitive applications, which recent security research relies on. In
particular, 6 recent papers [2], [50], [57], [71], [94], [95] root their
side-channel security assumptions in the effectiveness of predictive
mitigation to enable privacy-preserving applications using hardware
enclaves. Predictive mitigation in theory bounds the average leakage;
however, our experiments next show that it provides only biased
protection and practically amplifies the leakage for certain inputs.

Indeed, the average input-distinguishability achieved by predictive
mitigation, as depicted in Fig. 9, is fairly low compared to the
unmitigated case (Fig. 8). For example, the average top-3 input-
distinguishability for the Chrome browser drops to only 10.7% from
69.8%. However, this average metric is deceptive. When closely
examined, Fig. 10 reveals that the benefit of reduced leakage is
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Fig. 11: Fraction of victim inputs who suffer the worst privacy
leakage over 90% accuracy after applying the predictive mitigation.

not uniformly distributed among victim inputs. Fig. 10 plots the
per-input distinguishability for the Chrome browser after applying
predictive mitigation. The X-axis is sorted based on the original
termination timing for loading these websites in Chrome. The spikes
in Fig. 10 correspond to inputs that predictive mitigation fails to
protect (thus still have a high distinguishability). We refer to these
victim inputs as tail victims, who suffer the worst privacy leakage—
analogous to tail latency in the field of web application benchmarking.
We find that the tail victims form clusters on the X-axis. The
clustering behavior suggests that these tail victim inputs have original
termination timings that are within a similar range, given that the X-
axis is sorted based on the original termination timing of the inputs.
More concretely, we find that predictive mitigation fails to protect
these inputs whose termination times distribute across the epoch-
boundaries where predictive mitigation doubles the length of the next
epoch for the program’s termination time.

Besides Chrome, we find there exist similar tail victims among
other applications tested with predictive mitigation employed. Fig. 11
shows a stacked bar graph of the fraction of privacy-sensitive in-
puts who suffer an input-distinguishability greater than 90% given
different top-N metrics. This indicates that predictive mitigation
fails to protect these tail victims across all our tested applications,
with BFS-on-web being seemingly least impacted. However, Fig. 12
suggests even victim inputs in BFS-on-web are not safe from the
biased protection of predictive mitigation. Fig. 12 plots the tail top-
3 input-distinguishability. The y-axis shows the attacker accuracy
in fingerprinting the sensitive inputs, whereas the X-axis sorts the
inputs based on the probability (given in percentiles) each input
can be correctly identified. Although the percentage of inputs at
more than 90% top-3 input-distinguishability in BFS-on-web is small,
Fig. 12 uncovers that BFS-on-web actually hosts a larger fraction
of inputs that fall victim of the biased protection from predictive
mitigation. Fig. 12 also shows that although predictive mitigation
eliminates leakage from the termination timing channel for about
85% of Chrome’s inputs, it leaves 9% of the inputs with more than
80% probability of being accurately fingerprinted, and 7% of the
inputs unfortunately always leaked.

This inconsistency across sensitive inputs is due to the nonde-
terministic timing behavior in the system. The termination timings
of each program input execution may vary from run-to-run due
to system noise. This run-to-run variation shapes the termination
timing distribution of each input into a near-normal distribution. After
applying predictive mitigation, the resulting distribution for most
inputs is simply unimodal. However, for some inputs, the run-to-
run variation causes their original termination timing to span across
the prediction boundaries. Predictive mitigation therefore transforms
their termination timing distributions from near-normal distributions
to bimodal (or even multimodal in extreme cases) distributions
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Fig. 12: Tail input-distinguishability (top-3) after predictive mitiga-
tion against an attacker with only 8 timing samples. More than 7%
of Chrome’s inputs are still perfectly leaked.

which has distinct peaks and can be of different densities. For these
inputs, the attacker’s task becomes differentiating skewed bimodal
or multimodal distributions from unimodal distributions, which is
statistically easier than differentiating two near-normal distributions.
Therefore, by comparing Fig. 10 to Fig. 6a, we find that interest-
ingly (though not surprisingly), predictive mitigation may actually
exacerbate input-distinguishability. This occurs for the victim inputs
whose termination time is distributed across epoch boundaries. For
instance, after applying predictive mitigation, website 48 suffers an
88% top-1 input-distinguishability which was merely 16% before
mitigation. Similarly, top-1 input-distinguishability for website 98,
increased from 0 to 100%.

We conclude from Figs. 10 to 12 that predictive mitigation unpre-
dictably provides only skewed privacy protection across inputs,
as many inputs can still be easily distinguished by an attacker.
Predictive mitigation unfairly sacrifices the privacy of certain inputs
in return for a bounded average. The tail effect and the average metric
in the predictive mitigation are particularly pernicious for end-user
privacy. Since it is impossible to pre-determine the termination time
of all possible privacy-sensitive inputs, it is impossible to know a
priori which private inputs predictive mitigation will fail to protect
unless exhaustive measurements are taken for executing all possible
privacy-sensitive inputs.

B. Fuzzy-Clock

The fuzzy-clock idea may seem trivial: adding randomized noise—
so that the defense avoids substantial overhead—makes the adver-
sary’s task harder. Many prior proposals omit exact details. In this
section, we reveal the limitations of fuzzy-clock with a detailed
analysis.

Noise can be added on a per-input basis, i.e. program executions
of the same input will be randomized deterministically to a new
termination time. For example, a hash-based randomization scheme
will shape the executions based on the resulting hash. These schemes
rely on churning the randomization to prevent the attacker from
building a profile within the churn period. If the attacker manages to
do so, these schemes provide no protection for the termination timing
channel. Therefore in this section, we focus on per-execution noise
rather than per-input.

We vary the average noise as well as the noise spread. The noise
attributes are presented as a ratio of each program’s termination
timing range. The average of the noise determines the average perfor-
mance overhead, while the spread and average together determine the
worst-cast overhead. Note that an average of 100% noise has larger
performance overhead than padding all executions to the worst-case
termination time. Figs. 13 and 14a shows the input-distinguishability
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(c) PostgreSQL on TPC-H Q15
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(e) BC on Twitter social network
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(f) BC on USARoad graph

Fig. 13: Average input-distinguishability after applying fuzzy-clock schemes with different average and spread attributes. We use a subset
of test suite whose original top-3 input-distinguishability is higher than 40%. The noise attributes are presented as a ratio to each program’s
termination timing range. For example, an average 50% noise for a program that terminates between 100s and 1000s is 550s. An average
of 100% noise has larger performance overhead than padding all executions to the worst-case termination time.
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(a) Average input-distinguishability after tailored fuzzy-clock.

(b) Input-distinguishability after ill-fitted fuzzy-clock scheme.

Fig. 14: Chrome after applying (a): program-specific fuzzy-clock
scheme, (b): fuzzy-clock scheme designed for BC-on-Twitter. The
scheme in (b) lowers the average top-3 input-distinguishability for
BC-on-Twitter to 17% while leaving Chrome with an top-3 average
as high as 41.5%.

after applying fuzzy-clock schemes on the example programs (a
subset of the test suite whose original top-3 input-distinguishability
are larger than 40%). The X-axes in each subfigure show 4 groups,
within each the spread of the noise increases while the average only
increases across groups. Comparing across groups, the average noise
size has little impact on the protection. However, increasing the noise
spread offers better leakage reduction.

Different programs (Fig. 13a vs. 13d, 14a) and different data-sets
(Fig. 13d vs. 13e, 13f) enjoy distinct protections using the same
noise ratio. For example, with a noise average of 30% and 40%
spread, postgreSQL is only mitigated to around 80% top-5 input-
distinguishability, while 40% of noise spread lowers the top-5 average
to less than 10% in Chrome. For BC to achieve a top-5 input-
distinguishability lower than 30%, we need to add a 40% spread
for the twitter graph, 20% for road, and less than 10% for the web
graph, respectively.

Due to the strictly additive nature of timing noise, that is, it is
impossible to add negative noise to time, an adversary could prune the
list of potential secret information. Specifically, suppose a fuzzy-clock
scheme adds noise ranging from 0 to N. Given a fuzzed termination
time X , the attacker knows that the original termination timing T

is such that max(X −N,0)≤ T ≤ X . The max function is important
because time cannot be negative. This provides important clues to
the attacker to guess the actual termination time. When X < N, there
are fewer plausible actual execution times compared to when X ≥ N.

A defense that was based on unimodal leakage distribution is likely
insufficient to hide all peaks in the programs that have multimodal
distribution. Fig. 14 illustrates this inconsistency. With a fuzzy-clock
scheme designed for BC on the Twitter graph, Chrome still has a
95%-tail top-1 input-distinguishability of 92% and an average top-3
at 41.5%. The scheme manages to hide inputs for BC on the Twitter
graph to an average top-3 input-distinguishability as low as 17%.
However, it fails to hide the two peaks in Chrome’s termination timing
distribution (shown in Fig. 4b). As a result, the rightmost 20 inputs—
that fall into the long-termination time peak—in Fig. 14b exhibit
near-perfect input-distinguishability.

Therefore, fuzzy-clock cannot be applied at the system level or
transparently. The extent of noise needed to satisfactorily hide the
inputs varies dramatically based on the application and its data.
Indeed, fuzzy-clock defenses can add increasingly more noise to
cover all the extreme peaks. However, doing so runs directly against
the motivation of adding noise–trading off security for performance.

C. Leakage in Secure Software: The Tor Browser

Next, we investigate whether the real-world deployment of the
fuzzy-clock mitigation in the Tor browser (v12) together with
predictive mitigation could close the termination timing channel.
This study shows how countermeasures in existing privacy-focused
secure software help mitigate the termination timing channel, whether
predictive mitigation improves user privacy in the Tor browser, and
to what extent.

The Tor browser is a patched version of Firefox, which aims to
provider its users better privacy by deploying anti-tracking and anti-
fingerprinting techniques. Specifically, against timing-side-channel-
based fingerprinting attacks, the Tor browser relies on clamping
the explicit clock resolution to 100ms and adding jitters [56]. In
this evaluation, we run a JavaScript-based attacker who measures
the cache contention as a result from the Tor browser loading and
rendering the websites, similar to our Chrome experiments. Instead
of inspecting the contention traces and training a machine-learning
classifier on these traces, the modeled attacker fingerprints websites
rendered in the Tor browser with the termination timing channel. The
attacker determines the termination timing for each collected trace
using a common static threshold.
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Fig. 15: Top-3 tail victims from fingerprinting websites in the
Tor and Chrome browsers using the termination timing channel.
“Tor-predictive” and “Chrome-predictive” represent browsers with
predictive mitigation enabled.

We compare the vanilla Tor browser with one that employs
predictive mitigation. Fig. 15 plots the top-3 tail-victim metric for the
two Tor browsers as well as results from the Chrome experiments for
reference. Solid markers depict the tail victims for the Tor browsers
while open markers show tail victims for the Chrome browsers.
“Tor-predictive” and “Chrome-predictive” represent browsers with
predictive mitigation enabled.

Comparing the vanilla Tor browser (diamond) with the baseline
Chrome browser (open square), we see that for 75% of the inputs (i.e.,
websites), the fuzzy-clock mitigation employed in the Tor browser is
able to keep top-3 attacker classification accuracy at 40% or lower,
compared to an up-to 80% bound in the baseline Chrome. However,
the fuzzy-clock mitigation does poorly for the rest 25% tail victims,
some of whom suffer a top-3 classification accuracy as high as 95%.
We also see that while predictive mitigation eliminated leakage from
the termination timing channel for 85% of websites in the Chrome
browser, (i.e., P85 is 0), it fails to achieve the same in the Tor
browser at the 85%tile tail. Employing predictive mitigation in the
Tor browser reduces the P95 (95%tile tail) top-3 accuracy from 74%
to 46%. However, 1.4% of the websites are still left with over 80%
classification accuracy.

VI. IMPLICATIONS ON SECURE HARDWARE DESIGNS

In this section, we demonstrate that termination timing channel per-
sists even when microarchitectural resources are designed to eliminate
side channels. We perform the same fingerprinting attack as in § IV-C,
under simulated systems using the cycle-accurate gem5 simulator.
Table I details the baseline Skylake-like CPU configuration. We
evaluate the termination timing channel leakage when the processor
employs one of the two side-channel-resilient secure hardware: (1)
a 16-skew ScatterCache [83] as the LLC; (2) a static-rate 900-cycle
Path Oblivious-RAM memory controller used in [24] as a secure
baseline. Due to the limit of gem5 full-system simulation speed, we
evaluate the BC program on the USARoad graph.

Both secure hardware components obfuscate program execution
traces. Randomized LLC designs obfuscate the cache access pattern
to prevent LLC access trace-based fingerprinting. The evaluated
ScatterCache leverages a skewed, pseudorandom cache indexing
function, which uses keyed mapping between addresses and set
indices. By producing one index for each cache way, ScatterCache
randomizes the composition of cache sets, making observing access
trace through cache conflict significantly harder. Oblivious-RAM
memory controllers close the memory bus address-trace side channel
by obfuscating the memory access addresses. The Path ORAM design
manages the external memory as a binary tree. While each data block

OS Redhat 8 with Linux kernel 5.4.49System
Processor 4 x86 OoO Cores at 3GHz

Predictor LTAGE and Indirect Predictor, 512-entry BTB
Fetch 5 wide Fetch, Decode, Rename, 224-entry ROB

Dispatch 8 wide Dispatch, Issue, Writeback, 97-entry IQ

C
or

e

Exec
4 INT ALUs, 3 INT VectU, 2 FP FMAs,
168/180 Phys. Reg., 72/56-entry Ld/St Buffer

L1-I/D 32kB, 8-way, 2/4 cycles, 16-entry MSHR, LRU
L2 256kB, 4-way, 10 cycles, 20-entry MSHR, LRU

Shared L3
8MB, 40 cycles, 256-entry MSHR, stride prefetch,
LRU or ScatterCache [83] with 16 partitions

M
em

or
y

DRAM
8GB, 4 Channels, DDR4-2400,
DRAMSim2 or static-rate 900-cycle ORAM [24]

TABLE I: Skylake-like CPU in gem5 full-system simulation.
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(a) With a 16-skew ScatterCache [83] LLC.
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(b) With a static-rate Path ORAM (A secure baseline used in [24]).
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(c) Top-3 tail victims in simulated systems.
Fig. 16: Input-distinguishability for BC on USARoad graph with
simulated baseline and side-channel resilient hardware.

is mapped randomly to a leaf of the binary tree, they are stored on
the path from the root of the tree to its mapped leaf. Obfuscation is
achieved by accessing a data block along with the entire tree path of
blocks and remapping data block to a different leaf after each block
access. Additionally, the static-rate Path ORAM closes the memory
timing and utilization channel.

Notably, Path ORAM is specifically designed for input privacy:
The memory address traces of executing two identical inputs are
made indistinguishable from traces of two distinct inputs, from a
cryptographic perspective. Unfortunately, we show that neither of the
two secure hardware components improves input-distinguishability if
attackers leverage the easily accessible termination timing channel.

Fig. 16 shows the input-distinguishability on simulated termination
times for the BC analytical program on the USARoad graph. The
average top-3 accuracy is 72.9% (Fig. 16a) for ScatterCache and
95.4% (Fig. 16b) for ORAM. Both secure hardware designs result
in higher input-distinguishability than simulated baseline hardware
at 67.8% and a real-hardware baseline at 40.8% (Fig. 7f) without
randomized LLC or ORAM1. The system with ORAM leaks more
than the system with randomized LLC (Fig. 16b is darker than
Fig. 16a). This is because a static-rate ORAM reduces memory

1It is expected that the simulated baseline system exhibits higher leakage
than real hardware due to limited non-determinism in gem5.
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level parallelism by serving one request at a time, thus making
the termination timings across all inputs more distinct. However,
randomized LLC obfuscates the cache access pattern without dis-
turbing the parallelism in program executions significantly. Fig. 16c
shows the attacker accuracy in identifying the top-3 tail victims in
three simulated systems. The ORAM line rises above the baseline
and randomized cache systems, with P20 tail-victim inputs being
fingerprinted at above 80% accuracy. The similar trend between the
randomized cache and the baseline indicates that the randomness
introduced in randomized LLC barely shapes leakage distribution.

A key implication of this result is that if one threat model allows
attackers to measure/learn the termination timings, programs might
still leak substantially even with secure caches, memory controllers,
etc. turned on. In such cases, a safer trade-off might be to not employ,
for example, secure caches and instead opt for a dedicated machine
operated with strictly controlled termination-channel defenses.

VII. COUNTERMEASURES AND CONCLUSION

Direction and challenges for countermeasures. The fact that
state-of-the-art solutions are unreliable for general-purpose programs
leaves us with worst-case padding as the only solution today. If such
overhead is unacceptable, isolated security cores with deterministic
timing and dedicated single-tenant machines may be the only option
for securing general privacy-sensitive applications for the time being.

The wide range of execution times across inputs, the non-uniform
distribution of these timings, and the unrestricted privacy-dependent
program behavior, suggest that cryptography-oriented defense tech-
niques like constant-time execution may be impractical for a broad
class of privacy-sensitive applications. Moreover, the protection in-
consistency among different inputs and programs roots in the distinct,
non-uniform distributions of the observable side-channel traces across
all inputs and programs. This non-uniform distribution challenges
the protection schemes that seek amortized security and dooms the
privacy of those tail victims. As a result, a privacy-centric metric
for input-distinguishability is required for the termination timing
channel, similar to system level channels [86], [92]. Metrics like
Differential Privacy or K-Anonymity, which provides a protection
guarantee for each input, could be explored. However, closing the
termination timing channel poses a crucial difference that the noise
is only one-sided—we cannot reduce execution time.

Realizing the privacy-centric metrics for general-purpose programs
also presents a unique cross-stack challenge: Not only can termination
timings be measured across the entire stack, but the source of the
leakage resides in both the application and the hardware. Data-
dependent control flows, computations, and system calls in software,
caching, predictions, coalescing in hardware, and even undocumented
optimizations all contribute to the termination timing channel. This
makes it impossible to effectively address this channel in any layer
alone. Instead, cross-stack defenses, enabling applications to pass
requirements to all system layers, are needed. As architects, we need
to consider the termination timing channel before re-designing micro-
architectural resources with point solutions because the termination
timing channel is observable across many threat models and the
leakage remains even if other channels are closed.
Concluding remarks. In this paper, we have demonstrated the weak-
ness of the state-of-the-art mitigations, namely predictive mitigation
and fuzzy-clock, for defending the termination timing channel in
broad privacy-sensitive applications. These mitigations unpredictably
bias protection among private inputs. Unfortunately, much recent
research relies upon these defenses for building privacy-preserving
systems. We have alsopaper introduced the tail-victim metric in § III.

We have used this metric to quantify, for the first time, the privacy
leakage in the state-of-the-art mitigations for privacy-sensitive ap-
plications. This metric also underlines the unpredictable protection
distribution of the mitigations. Lastly, this paper has explored the
tail-victim challenges in existing side-channel mitigations deployed
in the Tor browser, as well as in future secure hardware proposed to
mitigate side channels.

More broadly, this paper is a call to arms: we invite architects (1)
to look beyond cryptographic primitives, (2) to design cross-stack
solutions that help protect user inputs, especially tail victims, at a
low cost.
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